Carderock Division
Naval Surface Warfare Center

Bethesda, Maryland 20084-5000

METAFILE FOR INTERACTIVE DOCUMENTS, VERSION 2
Application Guide and Draft Performance Specification
for the Encoding of Interactive Documents - MID-2 (3/96)

March 1996

Eric L. Jorgensen, Research and Technology Representative
Navy Technical Manual W orking Group

Prepared by the MID-2 Design and Development Team:
Darlene Janiszewski, NAW C-AD, Project Manager

L. John Junod, NSWC-CD

Michael Anderson, Antech Systems, Editor and Team Chairman
David Cooper, Antech Systems

Note: This final draft of the MID-2 (3/96) Specification and Application Guide has been prepared by
the U. S. Navy for purposes of review and comment by the general Navy, DoD, National, and
International technical community interested in standards for Interactive Electronic Documents
which require a mechanism (i.e., script) for controlling the presentation of text, graphics, and other
multimedia information developed for electronic display. It is written as an application of 1SO 8879
SGML and utilizes portions of 1ISO 10744 HYTIME. While it was initiated by the Navy for purposes
of developing a run-time standard for DoD Interactive Electronic Technical Manuals (IETMs), the
MID-2 (3/96) draft specification has been intentionally developed to be suitable for application to
generic scripted interactive documents of any nature and for any application. The Navy point of
contact regarding potential specification coordination issues is Eric Jorgensen, NSWC-CD Code 182,
email: jorgense@oasys.dt.navy.mil.

Approved for Public Release: Distribution Unlimited

FYI
Select CLOSE from the FILE menu to close this document and return to the CALS Specs and Standards main menu.

The Metafile for Interactive Documents, Version 2
Application Guide and Draft Performance Specification
for the Encoding of Interactive Documents
MID-2 (3/96)

March 1996

Prepared by the MID-2 Design and Development Team

Project Manager:
Darlene Janiszewski, NAWC-AD St. Inigoes

Team Chairman & Document Editor:
Michael Anderson, Antech Systems

Team Members:

Len Bullard, Loral
Terri Castelli, CSC
David Cooper, Antech Systems
Michael Croswell, CSC
Mark Drissel, CSC
Rob Groat, Booz Allen
Eric Jorgensen, NSWC Carderock
L. John Junod, NSWC Carderock
Neill Kipp, TechnoTeacher
Steve Newcomb, TechnoTeacher
Perry Rapp, CSC
Rob Sommerville, CSC

MID-2 (3/96)

Contents

1. HOW TO USE THIS APPLICATION GUIDE 1
2. REFERENCES AND SOURCES FOR ADDITIONAL INFORMATION 1
2.1 References 1

2.2 Other sources 1
2.2.1 NAWC-AD, Patuxent River MD, Applied Technology Branch, Code 4.5.8.6 1
2.2.2 NSWC Carderock 1
2.2.3 MID Design & Development Team Members 2

3. MID DEFINITION 2
4. WHY YOU NEED MID 3
4.1 Behavior of applications 3
4.2 The MID approach to standar dizing document behavior 3
5. GENERAL DESCRIPTION OF THEORY 4
5.1 Containers 4
5.2 Trangtions & Links 5
5.3 Contrals 6
5.4 Data Types 7
5.5 Semantic Grouping 7
5.6 Conditionals 7
5.7 Scripting 8
5.8 External Processes 9
5.9 HyTime Location and Linking Constr ucts 9
5.10 HyTime and SGML Management 9

5.10.1 HyTime Module Declarations 9

5.10.2 SGML and HyTime Notation Declarations 9

5.10.3 MID Parameter Entities 10

5.10.4 MID Document Type Declaration 10

5.10.5 MID Short Reference Maps 10

6. DTD WITH ANNOTATIONS FOR DEVELOPERS, ELEMENT NUMBERS

7. ALPHABETICAL INDEX OF ELEMENTS

8. WHAT HAS CHANGED SINCE ORIGINAL RELEASE OF MID

APPENDICES

A. PROCESSABLE MID DTD

B. RELATIONSHIP EXAMPLE

C. MID BACKGROUND

MID-2 (3/96)

11

39

41

Al

B.1

C1l

MID-2 (3/96)

1. How to use this Application Guide

The primary purpose of this document is to communicate, to authors and devel opers of MID documents and
applications, the intentions of the design team with respect to implementation of the MID DTD. Section 6 contains the
DTD, with annotations, arranged by functional groupings of elements as described in Section 5. The MID design team
has debated many issues in creating this DTD, and the annotations are presented to pass along as much of that
consideration as possible. There are some issues remaining, and the MID project staff solicits your input to making the
design more useful and complete.

Note that the use of terms such as “specification” or “standard” are not intended to claim the sanctioning of MID in an
official sense. The terminology for describing MID is intended to convey its purpose, namely as a common structure
into which technical information can be translated. For the record, the MID is the result of aresearch effort, not the
work of a standards body. It is our hope that the technology and techniques employed by MID will prove the concepts to
be valid, and provide guidance to those who would solve the problem of transporting information and logic between
source providers and presentation software. Adoption of MID as an officia specification or standard is a consideration
for the future.

This document also contains a general introduction to the MID (Sections 3 & 4), and references for more information
and background (Section 2). For the seasoned MID user, Section 7 provides an alphabetical reference to the elements,
and Section 8 chronicles the changes from the original MID definition (1994) to the current, evolutionary version
(1995). Appendix A contains a processable MID DTD. Appendix B contains an example using elements derived from
the relationship architectural form defined by the MID. Appendix C contains excerpts from the MID Draft
Specification, published in 1994, as an introduction to the original MID concepts and goals.

2. References and Sources for Additional Information

2.1 References

MID Draft Specification. Carderock Division, Naval Surface Warfare Center, Nov. 1994

2.2 Other sources

2.2.1 NAWC-AD, Patuxent River MD, Applied Technology Branch, Code 4.5.8.6

The R&D project that has resulted in the MID concept, design, and prototype implementation was initiated by the
Naval Air Warfare Center - Aircraft Division, St. Inigoes, MD.

The Navy Project Manager is Ms. Darlene Janiszewski. For information concerning the current status of the project, or
for collaboration among Navy projects interested in IETM or MID devel opment, contact Ms. Janiszewski by email at
<dj ani szews@i etm.nawcsti.navy.mil>.

2.2.2 NSWC Carderock

The MID project has been coordinated through the Navy representative on the Tri-Services IETM Working Group, the
Naval Surface Warfare Center - Carderock Division. Representatives at Carderock have been integrally involved in
setting priorities, identifying technical issues, and coordinating among IETM devel opment programs during the MI1D
concept and design phases.

For information concerning the relationship of MID to other Navy and DoD IETM devel opment projects, and to find
out more about the IETM Tri-Service Specifications (MIL-D-87269 and MIL-M-87268), contact Mr. John Junod at
<junod@oasys.dt.navy.mil>.

MID-2 (3/96)

2.2.3 MID Design & Development Team Members

The MID Design Team was formed in 1994 to consider possible solutions for problems with IETM interoperability.
The Team identified the problem as being primarily related to transport of IETM data between various presentation
systems. The MID design grew out of a series of meetings where the team considered a wide range of possible technical
solutions.

During 1995, the focus changed from identifying and formulating the basi c technical approach for IETM data

transport, to proving and improving the technical design through implementation. A software development effort was
launched, as well as a series of analysis tasks aimed at integrating the MID approach with related, existing and
emerging, standards and technol ogies. The development and analysis efforts both have the purpose of evolving the MID
design.

The following MID Design Team members were involved as indicated, and may be contacted via email (where listed)
for further information.

Member Organization Involvement Email
Michael Anderson Antech Systems 1995 chairman antech@norfolk.infi.net
1994 design
Vince Botticelli Lockheed Ft Worth 1994 design

Len Bullard

Loral

1995 analysis
1994 design chairman

chullard@HIWAAY .net

Bryan Caporlette

Passage Systems

1994 design

Terri Castelli

CSC

1995 development

David Cooper

Antech Systems

1995 development lead
1994 design

dwcooper@nando.net

Michael Croswell CSC 1995 development
Mark Drissel CSC 1995 development
Rob Groat Booz Allen 1995 development

Darlene Janiszewski

NAWC-AD St. Inigoes

1995 program management
1994 program management

djaniszews@
ietm.nawcsti.navy.mil

Eric Jorgensen

NSWC Carderock

1995 Technical review
1994 Technical review

L. John Junod

NSWC Carderock

1995 analysis

junod@oasys.dt.navy.mil

1994 design

Neill Kipp TechnoTeacher 1995 development neill@techno.com
1994 design

Steve Newcomb TechnoTeacher 1995 development srn@techno.com
1994 design

Mark Petronic Hughes Aircraft 1994 design

Perry Rapp CSC 1995 development

Rob Sommerville CSC 1995 development

Madeleine Sparks Loral 1994 admin.

3. MID Definition

The Metéfile for Interactive Documents (MID) is a common interchange structure, based on the international standards
for SGML and HyTime, that takes neutral data from varying authoring systems and structures it for display on
dissimilar presentation systems. [MID Draft specification, Nov. 94]. It is envisioned that a MID instance will be a hub
document, containing references to various, external source data components. The MID instance will be created by an
interactive, automated process (i.e., a“MIDWriter”), and will be interpreted for viewing by off-the-shelf software
incorporating a“MIDReader.”

MID-2 (3/96)

Development of a MIDReader was the primary focus of the 1995 MID project, and its devel opment has served to both
highlight issuesin the structure of the MID, and identify implementation issues. Resolution of these issues has resulted
in an evol utionary improvement to the MID specification.

The MID definition is directed to solving a well-known and pervasive problem in the IETM devel opment community:
moving IETM data between presentation products while preserving the (critically important) logic coded in the data. A
major goal of the effort has been to support the Tri-Service IETM Specifications for data storage (MIL-D-87269), and
enable compliance with presentation standards such as MIL-M-87268. The MID makes extensive use of SGML and
HyTime to accomplish this goal in an open and extendible architecture. The following diagram illustrates the intended
use of a MID instance in the context of an IETM delivery.

Y
N

Browser

—» MIDReader [P (e.g., 87268)

MIDWriter P

IETM Sources
(e.g., 87269)

MID Instance

—p MIDReader [P Browser

N~

Figure 1: MID Architecture Overview

MID does not contain format or style information. MID browser software will have to determine paositioning and
appearance of MID elements, either explicitly or through some intermediate structure. Document Style Semantics and
Specification Languare (DSSSL) appears to be a likely candidate to apply style and presentation semantics to the MID
definition. However, until an authoritative list of the style characteristics appears, each MIDReader/ browser
application will be responsible for defining how to handle the presentation appearance without coding it into the MID
instance. A good option would be to design SGML structures to specify application of style. This should allow
maximum flexibility in adopting standard methods when they are available, e.g., through tree transforms to DSSSL.

4. Why you need MID

4.1 Behavior of applications

In the context of Interactive Electronic Technical Manuals (IETMs), ‘ Interactive’ means that the application reacts to
input from users on areal time basis. This reaction is often to tailor the content and presentation of subsequent
information.

To create an IETM, authors and devel opers must consider a philosophy different from that used to create page-based
documents; they must program behavior into the document. The encoding of logic to control document behavior is one
facet of electronic delivery that can cause incompatibility between IETM (and other) information systems. The
development of IETM Specifications for document delivery, such as MIL-D-87269, standardize the structures for IETM
content, and introduce logical conditions for information rendering. The MID adds the missing layer - standardization
of the methods for encoding document behavior, and connecting the content to presentation in an unambiguous way.

4.2 The MID approach to standardizing document behavior

The MID, asits name implies, uses a hybrid metafile approach to define templates and methods for encoding logic
intermixed with information content. In the classic sense, a metafile in SGML provides a template that guides an

MID-2 (3/96)

author in creation of aDTD. The MID uses “meta’ definitions for linking of information, but also defines structures to
be used as tranglation targets for information to be rendered, and structures for specifying logical flow.

The way that the MID specifieslogical flow is through SGML constructs that are borrowed from common
programming languages. Just as compilers and interpreters require a standard syntax to create executabl e software
from a programmer’ s code, a MIDReader requires a standard syntax to produce an interactive presentation from an
IETM author’ s document.

In a paper technical manual, an author makes assumptions about the projected level of expertise of the technician, and
then provides tables, diagrams, and paragraphs of text that address, for example, each of the steps in a repair
procedure. Steps that are only done under certain conditions are mixed with steps that are always applicable, because
there is no mechanism for turning off the display of steps that are not applicable. An IETM, on the other hand, can use
multimedia output to show only the applicable information. The application decides when to render (e.g., display) this
information, and how to organize it for maximum efficiency.

The MID structures are what enable an application to determine when, and nominally where, to render information.
The decisions as to when information gets rendered are made by decoding the logic in a MID script, which in turn may
reflect the logic embedded in the source file (MIL-D-87269). An IETM author, already burdened with the responsibility
to encode logic in documents, now has a standardized way to do it. The decisions as to where information gets rendered
are derived from semantic grouping of renderable elements. The MID scripting language allows:

» Conditional rendering

» Logical grouping of elements to be rendered

» Expressions, functions, statements

» Storage of valuesfor later use (i.e., variables), and definition of where the variables apply (i.e., scoping)
» Passing of responsibility to external processes, and means for defining the parameters of the processing

These will be described further in Section 5, and in the Application Notes for individual elementsin Section 6.

5. General description of theory

The following paragraphs outline the major types of elements found in the MID DTD. This description is intended only
to give ageneral overview of how the MID accomplishes its stated goals.

5.1 Containers

InfoContainer s define a set of information that is rendered as a package. In the simplest case, an infoContainer (1C)
can define frames of text and graphics that will be simultaneously displayed. In a more complex case, the IC might
contain a script, with a set of variables that affect its behavior, or the behavior of subsequentinfoContainers. Transient
panes of information, and user interactions such as alerts and dialogs, might be part of an IC. Conditional information
can be reflowed, based on user input, without leaving the IC. While it is theoretically possible (i.e., syntactically
correct) to place an entire IETM in asingle infoContainer by using the power of scripting, this would constitute
poorly-formed MID; authors are encouraged to use the IC to good advantage by logical arrangement.

InfoContainer s may be arranged in chains for sequential presentation starting from a defined point, or placed in pools
where they can be reused.

Panes define individual elements of content to be rendered. Typically, a browser would render the contents of apanein
awindow of agraphical user interface. Many panes may be displayed as part of asingleinfoContainer. A pane
encapsul ates a scope that defines its own set of variables, and may use ascript to retrieve content from a source
document. A common use of scripting in a pane would be to get information content, based on some conditions, using
aHyTime link.

MID-2 (3/96)

Rendering of panes within given screen real estate is the purview of the browser. There are no position, size, or other
visual properties defined as part of the MID pane. Such properties must be derived from a combination of the logical
(i.e., semantic) grouping of the panes, and the application of an optional stylesheet from a source external to the MID.

Panes can be used to implement user interactions by defining a set of controlsto be rendered on the pane. Again, the
position and style of controls can not be specified in the MID. In fact, the type of control used in a particular software
environment may vary significantly, depending on the look and feel of the operating system. The MID, for example,
defines adynamicList element that enumerates choices for a user selection. Thelist is specified by an attribute to be
either of type pickOne or of type pickMany. A pickOne type dynamicList could be rendered with equal effectiveness as a
drop down list box, a menu, or a set of mutually exclusive (radio) buttons.

Elements of type Containers Element # Description
infoContainer 11 The fundamental building block of a MID application,
defining a logical package of information to be
rendered.
chain 12 A set of infoContainers that are intended to act as a

sequential set. A chain must be navigated starting with
the first infoContainer in the sequence.

pane 13 The delimiter for a logical fragment of content; a
component part of an infoContainer. The pane should
be filled with a single reference, loc, query, or
contiguous piece of information content.

alert 14 Special case of a pane, where the contents are to be
rendered as a transient interaction that must be
acknowledged by the user before continuing (modal).

clientArea 17 Container for panes, paneGroups, and
conditionalPanes.

pool 15 A common resource area, designed to house reusable
containers, scripts, and controls.

messageArea 16 A container for reporting supplemental information

(e.g., instructions, state of the application) that would
typically be related to the information content (rather
than the operation of the browser software).

5.2 Transitions & Links

Transitions can be specified by an author to occur between infoContainers, or within an infoContainer to render new
panes or controls. Types of transitions may include goto, gosub, or spawn. The difference between these transition
types lies in the way the application handles the state of the currently-rendered containers. For example, a button on a
pane within infoContainer IC-1 might contain a script that implements a goto transition to infoContainer IC-2. In this
case, all non-global variables (e.g., set by theinfoContainer or a pane in IC-1) would be cleared, and the state space
would be set to represent IC-2 variables. In asimilar case where a gosub was specified in place of thegoto, the IC-1
variables would be maintained, and then restored at the completion of IC-2. Using a spawn would instruct the
application to simultaneously maintain both sets of state variables. By these mechanisms, an author has the ability to
control the appearance of an application, without undue restriction on the application’s unique look and feel.

A get specifies that information at a source be retrieved, and rendered at the point of the get. This element represents
one of the most important powers that MID offers. The get allows source documents, delivered and maintained
independently, to be bound to the presentation at run-time. It also allows source documents to be in various formats,
and still be accessible to a MID instance. The power of HyTime location and linking facilities is what makes this
capability both practical and standard.

MID-2 (3/96)

Relationship is a construct based on a HyTime ilink that allows authors to establish connections between various types
of information in a document. Relationship may be used to implement hotspots in text and graphics. The relationships
in aMID document are located in the poal.

Becauser elationship is an element pseudo-declaration, many elements may be created to implement r elationships
within a given MID. Each of the derived elements will define a specific type of relationship, with the instances of that
element linking information that is related in the defined way. Rendering of the relationshipsis up to the application;
often the anchors of the relationship links will be treated as hotspots that can be selected by users, and traversed
according to the rules of HyTime ilinks.

Relationships are based on named connections between related information. This enables the author to specify, and the
browser application (MIDReader) to determine, the reason for a particular link, in addition to the linked objects. Thus,
the nature of the relationship is transported from source to end-user.

Elements of type Trans & Link Element # Description
goto 19 Implements a transition to a new context, and forgets
about the old one.
gosub 19 Implements a transition to a new context, but keeps

track of the old one so the application can return when
the new context is terminated, and restore the previous
state.

spawn 19 Maintains the state of two contexts simultaneously;
application allows user to transition between them at
will.

get 20 Enables the collection of information from remote
sources, for rendering at runtime.

relationship 21 A pseudo-declaration (element template) for
establishing types of links that are meaningful in a
given document context. The elements created using
the relationship template may be used for
implementing hyperlinks in a browser application.

5.3 Controls

Controls define means for users to report events back to the MID instance. Authors specify what menus or buttons
should be associated with a particular infoContainer, and how the application should respond to selection of such a
control. Also, user interaction elements such as fillin and dynamicList can be combined with other controls to gather
information through an interactive dial og.

Menus are intended as a generalized way for authors to define the high-level entry points into an information set. The
term menu has certain implications to software devel opers with respect to rendering. However, menus differ from lists
in the MID only by virtue of the fact that they contain a set of buttons rather than elements of content.

The term button, as menu, has a connotation in the context of graphical user interface (GUI) devel opment. However,
the MID concept of a button does not necessarily imply rendering as a graphical push-button. Buttonswill be
considered, during the rendering of a MID instance by an application, to denote the function normally performed by a
button, namely to launch a process.

Elements of type Controls Element # Description

menu 23 A collection of buttons used for launching processes
in a MID browser. Menus are grouped together into
menubars, and reused in infoContainers as
appropriate.

MID-2 (3/96)

button 25 A structure representing the generalized function of
launching a process.

fillin 26 A field that allows free-form user input of text.

dynamicList 27 List of content items that is built at runtime using an
expression.

5.4 Data Types

The elements listed as data types are used for containing content information that is rendered, for example, in a pane.
Depending on the implementation of MID, the data may be contained directly in the element, or retrieved by a script.

Elements of type Data Type Element # Description

text, paragraph 30, 33 Contains character data or other text items.

specialText 31 Indicates some text that is qualified by a semantic.

title 32 Defines the text that is to be rendered as a title for the
element that contains it.

graphic, audio, video, animation, 37 These elements access external notations that define

icon how to access various file formats.

tableType, fcsTable 39 fcsTable is a generalized method of storing data that is
typically rendered in a table format.

orderedList, unorderedList, item 34 These are content intended to rendered as lists. These
are not affect by the support attribute of the mid
element..

5.5 Semantic Grouping

Semantic grouping is used, in lieu of coordinate systems, to indicate to applications the layout priorities for a set of
rendered elements. A grouping might be used by the application to determine how to spatially allocate panes within an
infoContainer, or where to put delimiters such as a ‘group box’ for controls within a user interaction pane. These are
the only cues that the application can get directly from the MID instance to determine placement of windows and
controls on the screen. Authors who do not use these structures risk placement of elements based solely on their order,
or worse, random placement.

Elements of type Sem Group Element # Description

paneGroup 46 A group of panes within an infoContainer.

widgetGroup 47 A group of buttons, dynamicLists, and fillins to be used
for user interaction.

buttonGroup 48 A group of related buttons that are intended for either
single (pickOne) or multiple (pickMany) selection.

menubar 49 A collection of menus and buttons that is reused
among infoContainers.

5.6 Conditionals

Conditionals are used in conjunction with scripts to indicate panes or controls that are rendered only under certain
conditions. The conditions are evaluated when a r eflow statement is encountered in a script.

MID-2 (3/96)

Conditionals are particularly suited to rendering complex sets of information that contain dependencies. For example,
an author may want to populate an equipment list based on the selection of equipment type. Rather than building
separate panes with the list for each equipment type (and the requisite transitions to the proper pane for rendering), an
author could include a dynamicList within a conditionalWidget, where the list builds its contents based on an
expression that gets re-evaluated at each r eflow.

Elements of type Conditionals Element # Description
conditionalPane 51 Wraps a paneGroup that is rendered in entirety when a
reflow is encountered in a script.
conditionalWidget 52 Wraps a widgetGroup that is rendered in entirety when
a reflow is encountered in a script.
reflow 53 This element allows authors to render the conditional
elements within a specific target and its subtree.

5.7 Scripting

Scripting is the means for MID to incorporate application behavior in a document. Authors have control over the flow
of logic by functions, variables, statements, strings, and other operations. Scripts must be interpreted by MID
‘engine’ software, which is developed as part of a browser application, to read or import a document.

Scripts are most often used to determine how, when, and where to get information for rendering. Thus, scriptsare
usually closely associated with transition and link elements such as goto, gosub, and spawn.

Elements of type Scripting Element # Description

script 55 Declares an element which encapsulates the logic
defining behavior of a document.

name 56 Identifies a function, variable, xenodecl, or scriptLabel
for purposes of maintaining system state during
execution of a script.

statements 57 A convenient wrapper for logical processes available
for use in a script.

expr 65 A statement type that is evaluated by a script
interpreter, and returns a copy of the result.

assign 67 Places the results of an evaluated expression in a
variable.

vardecl / variable 59/ 66 Declares / stores a value.

funcdecl / function 60/ 68 Declares a function / Sends arguments to a funcdecl or
xenodecl for evaluation.

argdecl / argument 61/ 69 Declares an argument / Passes the results of an
expression to a function for use by the function.

constant 71 Stores a value of a given type.

stringOperations 63 A parameter entity enumerating the types of string
operations in a MID document.

listOperations 64 A parameter entity enumerating the types of list
operations in a MID document.

if, else, loop, continue, break, 72,73, 74, Structures that specify flow control in a script. These

switch, case, default, jump, 75, 76, 76, generally specify execution of a statement based on

scriptLabel, gettype 77 evaluation of an expression.

add, multiply, subtract, divide, 70 Represent operations to be performed on one or more

modulus, eq, It, gt, le, ge, expressions, as indicated.

and, or, ne, not

MID-2 (3/96)

5.8 External Processes

External processes are accommodated through SGML notations and a structure called a xeno. The xeno element type
definition declares an element which declares a function written in non-SGML encoding and processed external to the
MID. Thatis, it isused in the same way that an assembler or other non-native application language can be declared
from within another language, e.g., C or ADA. These processes could also be used, for example, to tell a browser how
to use a graphics server to display a particular format of graphics. The xeno requires that a notation location be
specified to enable the MID application to determine which external process must be called to handle the declared
function when called and what arguments must be passed to it.

Elements of type Ext Process Element # Description
xenodecl 95 Binds a name and argument declarations to a call to
an external notation.
Xeno 96 Declares an element that calls a function that is not
coded in SGML.

5.9 HyTime Location and Linking Constructs

MID uses many HyTime constructs to provide location and naming conventions, and to link related information
together for retrieval by dissimilar presentation systems.

Elements of type HyTime Element # Description
nameloc, nmlist 101, 102 Named location addresses.
treeloc, relloc, dataloc 104, 105, Coordinate location addresses.

106
proploc, notloc, bibloc 109, 115, Semantic location addresses.
116

5.10 HyTime and SGML Management

5.10.1 HyTime M odule Declar ations

HyTime module declarations that declare which features of the metal anguage standardized by SO -10744 must be
supported for a MID document entity must be included in the prolog of an SGML document. They follow the close of
the SGML Declaration.

A MID requires the use of the following HyTime modules:
<?HyTime VERSION "ISO/IEC 10744:1992" HY QCNT=32>
<?HyTime MODULE base exidrefs>
<?HyTime MODULE measure>
<?HyTime MODULE locs anydtd coordloc HyQ multloc query relloc>
<?HyTime MODULE links manyanch>

5.10.2 SGML and HyTime Notation Declar ations

The following notation declarations are required for the MID.

MID-2 (3/96)

* SGML -- enables access to external documents encoded in SGML
<INOTATION SGML PUBLIC "+//1SO 8879:1986//NOTATION
Standard Generalized Markup Language//EN">
* HyTime -- enables access to external documents encoded in the Hypermedia Time-based Structuring Language
<INOTATION HyTime PUBLIC "+//ISO/IEC 10744:1992//NOTATION
Hypermedia/Time-based Structuring Language//EN">
* HyQ -- enables use of documents that include HyQ queries written in the notation prescribed by 1ISO 10744
<INOTATION HyQ PUBLIC
"+//ISO/IEC 10744:1992//INOTATION HyTime Query Notation//EN" >

NOTE: As other non-SGML datatypes are required for MIDs, this list must be extended. At thistime, the
notations for graphics, audio, video and animation are not prescribed. Also, any notations required for accessing
external processes of other types (e.g., diagnostic modules) are not defined. The HyQ HyTime query language is
being merged with Standard Document Query Language, SDQL, which will aso be used in the Document Style,
Sematics, and Specification Language (DSSSL) Standard (ISO/IEC 10179). The NOTATION for HyQ is subject
to revision based on the adoption of SDQL.

5.10.3 MID Parameter Entities

The following entities are defined for inclusion in MID element type declarations (link and loc) and attribute list
declarations (yesorno only):

<IENTITY % yesorno "NUMBER" >
<IENTITY % loc "nameloc | treeloc | dataloc | notloc | proploc | relloc | bibloc">

5.10.4 MID Document Type Declaration
Thisisthe formal document type declaration for a MID:

<IDOCTY PE mid PUBLIC "-//USA-DOD//DTD MID Document Type Definition 19951201//EN">

5.10.5 MID Short Reference Maps

It is recommended that the requirements of FIPS 152 which preclude the use of the shortref feature of SGML be waived
for the MID. Furthermore, it is recommended that a shortref map be constructed that simplifies the entering of
complex MID structures such as those used in the <script> element type statements.

10

6. DTD with annotations for developers and element numbers

Ref M D DTD Application Notes
1 <l--
MD: Metafile for Interactive Docunents
Docurment Type Definition
Thi s docunent type definition shall be identified by the follow ng
decl arati on:
PUBLIC "-//MD// DTD M D Docunent Type Definition//EN'
-->
2 <!-- NOTATI O\S -->
3 <I'NOTATI ON SGML PUBLI C) HyQis to be merged with the Standard Document Query
"+//1SO 8879: 1986/ / NOTATI ON St andard General i zed Markup Language//EN' > Language (SDQ.), also used in the Docunent Style,
) Sematics, and Specification Language (DSSSL) Standard
<I NOTATI ON HyTi ne PUBLI C (1'SO' I EC 10179).
"+//1SO | EC 10744: 1992/ / NOTATI ON Hyper nedi a/ Ti me- based Structuring
Language// EN' >
<! NOTATI ON HyQ PUBLI C
"+//1SQ'| EC 10744: 1992/ / NOTATI ON HyTi me Query Notation//EN' >
<! NOTATI ON vi rspace PUBLIC
"+//1SQ'| EC 10744: 1992/ / NOTATI ON Virtual Measurenment Unit//EN' >
4 <!-- ENTITIES -->
5 | <!-- locs]) Modi fication of entities is discouraged, because it
These are the HyTime Location addresses used by the MD. --> will invalidate the standard. The application wll
not be expected to reflect nodified entities inits
<IENTITY %l ocs "naneloc | treeloc | dataloc | notloc | proploc | relloc i npl enent ation of gettype.
| bibloc" >
6 <l-- primtives, functionType, variabl eType, constant Type

The M D script primtives are listed in the entities below. The
application may choose to override these declarations to extend or
constrain the MD definition. An atomis string or any one of the
primtives. -->

<IENTITY %primtives "boolean | int32 | uint32 | int64 | uint64 |
float32 | float64 | sgmchar" >

Aut hors are recomended agai nst using int64 and
uint64 until such time that it becomes standard in
ANS|I C. Declare by support policy if required.

Definition of the casting rules: fromuint to int,
32 to 64, int to float, char to string, int to

bool ean, float to bool ean, boolean arithmetic: + is
‘or', * is ‘and’. Anything else is considered poorly-
formed MD, and may result in unpredictable results.

11

MID-2 (3/96)

Logi cal operators: not, and, & or only apply to
bool eans.

Bool eans shoul d not be used as nunerics in arithnetic
operations. The results of using a boolean in an
arithmetic operation (add, multiply, subtract,

di vide, nodulus) is inplenmentation dependent, and
applications are encouraged to warn of a poorly-
formed M D docunent.

<IENTITY % functionTypes "%rinitives | string | atom| list | any |
voi d" >
<IENTITY % vari abl eTypes "%rinmtives | string | atom| list | any" >

<IENTITY % constant Types "%rinmtives | string" >

Assignnment of a string to a character gets the first
character. Assignment of character to string makes a
string of unit length

Aut hors should not performarithnetic operations
(add, multiply, subtract, divide, nodulus) on strings
or characters. This will elinmnate problens with
casting in operations where strings and chars are

m xed. Applications will not support such operations
consi stently.

The use of the function type or varible type “list”
will require the used the M D Support attribute. See
el enent #9, page 13

<l-- MD -->

<l-- md

The mid element is the root element for a MD application. The
vardecl s, funcdecls, and xenodecls in its inmrediate content are gl oba
declarations to the MD application. The MD instance is processed by
first processing the global declarations and then the master script.
The M D returns the results of evaluating its master script. The type
of the resulting data is given as the value of the functionType
attribute. This specification is redundant and is nmade solely for
convenience. It is areportable MDerror (RVE) if the type of the
return value of the master script does not match the return val ue of
the MD.

Dat e and version hold human-readabl e strings for specifying the date
and version of this docunent.

The docrdu attribute specifies the neasurenent dommins of the
docunent's finite coordinate spaces (fcs) and the | east conmon unit
for conputing dimensions in each fcs

The security attribute identifies the security designation for this
M D docunent. Security is inplenented as a HyTinme activity policy.

The followi ng are support options for the support statenent. The
names may be listed in any order

12

MID-2 (3/96)

condi ti onal Pane
Thi s docunent may contain conditional panes.

condi ti onal W dget
Thi s docunent may contain conditional w dgets.

fcsTabl e
This docunent may contain MD fcs tables.

Iist

If list is specified, this docunment may use the list data structure
and the list expressions. |If list is not specified, list nmust be
del eted fromthe functionTypes and vari abl eTypes paraneter entities.

M L- M 87268
Thi s docunent is intended to be used in connection with software
whose user interface strictly conforms to M L-M 87268.

nonM D
Thi s docunent may contain addresses of |ocations in external
SGW/ HyTi me docunents which are not M D docunents.

query
Thi s docunent may contain queries which address |ocations in
external SGW/ HyTi me docunments which are not MD docunents. |f query

support is specified, nonMD support is inplied.

rel ationship
Thi s docunent may contain MD relationship forms.

spawn
If spawn is specified, this docunent may contain spawn el enents.

string
If string is specified, this docunent nmay use the string data
structure and the string expressions. |If string is not specified,

string nmust be deleted fromthe functionTypes and vari abl eTypes
paraneter entities.

Xeno

If xeno is specified, this md document may use the xenodecl and
xeno el enents. Al data content notations nmust be decl ared using
notation declarations in the DTD

-->

<IELEMENT mid - O ((vardecl | funcdecl | xenodecl)*, script, pool?) >
<! ATTLI ST m d

HyTi ne NAMVE #FI XED HyDoc

id ID #l MPLIED

functi onType (% unctionTypes;) atom

dat e CDATA #| MPLI ED

ver si on CDATA #| MPLI ED

13

MID-2 (3/96)

docndu CDATA #FI XED "virspace 1 1"

HyNames CDATA "activity security"”

security | DREFS #| MPLI ED

support NAMES "condi ti onal Pane conditional Wdget fcsTable |ist
M L- M 87268 nonM D query rel ati onship spawn string xeno"

10 <! -- CONTAI NERS -->
11 | <!-- infoContainer I nfoCont ai ners and other initialization scripts are
When an infoContainer is accessed, its declarations are processed. processed in the order that they appear in the MD.
The menubar is built fromthe Iist of menubars given in the attribute For exanple, scripts within an infoContainer, title,
val ue, then the script (which may contain adjustnments to the nmenubar alert, clientArea, etc. are processed as the elenents
in setState commands) is executed. After this, the title, alerts, and are rendered. Button scripts are only rendered when
clientArea are processed in the order they appear. The functionType they are activated by returned events.
attribute specifies the return type of this construct.-->
I nf oCont ai ner pools contain panes or w dgets that are
<! ELEMENT i nfoContainer - O ((vardecl | funcdecl | xenodecl)*, script, used conditionally (or as pop-ups) within the
title?, alert*, clientArea, pool?) > i nfoCont ai ner. They are not accessible from outside
<! ATTLI ST i nf oCont ai ner t he i nfoContai ner.
id ID #l MPLIED
menubar | DREFS #| MPLI ED ‘functionType' applies when the infoContainer is for
functionType (% unctionTypes;) atom the purpose of getting input fromusers.
>
12 [<!-- chain The intent is for chains to be used for sequenti al
Access to infoContainers within a chain is restricted to access of infoContainers, as in a procedure. Chains
infoContainers within that chain. Wen a chain is accessed, its first nmust be entered at the first infoContainer; however,
contained infoContainer is processed. --> once in a chain, the author can specify any order of
traversal w thin the chain.
<! ELEMENT chain - O (infoContainer)* >
<I ATTLI ST chain If the author intends that a chain be rendered, the
id I D #l MPLI ED link should be made to the chain rather than
> explicitly to the first infoContainer in the chain.
Spawns to other infoContainers inside the sane chain
are considered poorly-formed M D. Spawns outside the
chain are OK.
13 <I-- pane

A pane is a single user interface presentation, which is rendered
when it is encountered. A pane encapsul ates a scope. A get within a
pane causes the target to be rendered on this pane. Scripts within
panes are run when the pane is rendered. The return value of the script
is the return value of the pane. It is a RMEif the type of the pane
and the containing script are not the same. A pane is npdel ess when
contained in a client area or when called fromspawn. A pane is nodal
when cal | ed from gosub.

The security attribute identifies the security designation for this
pane. Security is inplenented as a HyTine activity policy.

14

MID-2 (3/96)

-->

<! ELEMENT pane - O ((vardecl | funcdecl | xenodecl)*, title?,
(text | % ableTypes; | graphic | audio | video | animation | w dget G oup
| get | script)) >
<I ATTLI ST pane
id |D # MPLI ED
functi onType (% unctionTypes;) atom
HyNames CDATA "activity security"”
security | DREFS #l MPLI ED

14 | <!-- alert Al ert border styles are a functional of the rendering
An alert represents a nodal popup w ndow with the contained actions of the reader and might be specfied by use of
information. The contents of the alert are evaluated and rendered in a style sheet. The style of alert border specified in
the order they are encountered. The alert is popped down when a M L- M 87268 are not a function of the MD.
return alert statenent is encountered in the button script. The type
attribute indicates the semantic of the alert. -->
<! ELEMENT alert - O (title?, icon*, text, button) >
<I ATTLI ST al ert
id | D # MPLI ED
type (warning | caution | note) note
>
15 | <!-- pool There are two types of pools: MD pools, and

El ements in the pool are not rendered until they are requested by
identifier reference. The scope of all resolution of variables, etc.,
is always specified lexically, i.e., variables referenced in the pool
are valid or invalid with respect to the containing scope (md or
infoContainer), not with respect to the caller's state. Anpng other
things, the pool may contain elenents of the follow ng types: HyTine
| ocation address, HyTime hyperlink (e.g., relationship), chain,

i nf oCont ai ner, menubar, pane, alert. -->

<! ELEMENT pool - O ANY >

i nf oCont ai ner pool s.

I nf oCont ai ner pools can contain panes, w dgetG oups,
and other elements that can legally be contained in
an infoContainer. Other infoContainers, chains, and
scripts are not allowed in infoContainer pools; only
in MD pools. Pools may not be contained w thin other
pool s. Authors nmust guard agai nst nesting pools,
e.g., wWithin a script in a button that is in a pool.

Scripts should not be directly in pools, because
there is no specified way to handle it in the DTD.

The pool is intended as a data container for reusable
elenents. |Its lexical scope is defined by the scope

of who is referencing it (i.e., pools have no inpact

on scope). Handle as nmacro substitution.

Wil e an infoContainer could, within the rules of
syntax and wi thout harmto scoping rules, be placed
in the pool of another infoContainer, this would be
consi dered poorly-forned M D.

The script interpreter or conpiler in a M DReader
doesn’t need to parse the pools directly - the

15

MID-2 (3/96)

contents of the pool are only parsed when referenced
directly. This fact makes the content nodel of #ANY
manageabl e for application devel opers.

16 | <!-- nessageArea)) ‘get’, as an elenent of messageArea, should point to
The contents will be evaluated and concatenated in the order in #PCDATA, #RDATA, #CDATA, or to a notation.
whi ch they appear, and the results will be rendered by the application
as a status nessage. -->
<! ELEMENT nessageArea - O (get | expr | #PCDATA)* >
17 | <!-- clientArea _ In an 87268 inplenentation, the last child of a
A client area is the container for panes, paneG oups, and client area nust be a widgetGroup pane. This pane is
condi ti onal Panes. The panes are rendered in the order they are the footer bar. The nenbers of the widget Group nmay
encountered. --> only be buttons. The label for the w dgetGoup will
_ o not be rendered.
<! ELEMENT clientArea - O (pane | paneGoup | conditional Pane | alert)* >
It should noted that an enpty clientarea is all owed,
whi ch woul d provide for script only processing within
t he infocontainer.
18 <!-- TRANSITIONS & LINKS -->
19 <!-- gosub, goto, spawn

Expresses a HyTinme hyperlink with specific MD script traversal
semanti cs.

Gosub indicates that the state of the current infoContainer be saved
and the target object rendered. Gosub targets may be of the follow ng
types: infoContainer, chain, pane, conditional Pane, alert, nmd. Gosub
is forbidden to an infoContainer that is nested in another chain.
Gosub is forbidden to a pane or conditional Pane that is nested in

anot her infoContainer's client area or paneG oup.

Goto indicates that the current infoContainer be abandoned i nmediately
and the new i nfoContai ner |aunched. Goto targets may be of the
follow ng types: chain, infoContainer, nmid. Goto is forbidden to an

i nfoCont ai ner nested in another chain. Return values fromobjects
which are targets of goto are |ost, because there is nothing waiting
on the returned value. A goto which targets this M D docunment is
equivalent to a restart of this M D document.

Spawn i ndicates that control flow splits. Spawned targets may be of
the follow ng types: infoContainer, chain, pane, conditional Pane,

m d. Both parent and child conpete for focus in the

application display space. Spawn is forbidden to an infoContainer
nested in another chain. Spawn is forbidden to a pane nested in a
client area. Return values from spawned objects are |ost, because

16

MID-2 (3/96)

there is nothing waiting on the returned value. Wen a spawn is
encountered, control stops in the calling script, the target is flowed
until it reaches an idle state, then the caller continues until it
reaches an idle state. -->

<! ELEMENT (gosub | goto | spawn) - O (%ocs;)*>
<I ATTLI ST (gosub | goto | spawn)

HyTi me NAME il i nk

HyNames CDATA "linkends target”

anchrol e CDATA "ne target"

target |DREF #REQUI RED

20 | <!-- get A ‘get’ element may point at (i.e., have as its
Get expresses that the information at the source be collected, content source) another get element, and so on in a
concat enated, and rendered at the point of the get. chain of indirection to the final data
If space is specified, the nenbers of a target aggregate will be
delimted by a single space before the data is concatenated. |If
normelize is specified, leading and trailing white space is renpved
and nmul tiple contiguous spaces are converted into a single space. -->
<! ELEMENT get - O (%ocs;)*>
<! ATTLI ST get
HyTi me NAME il i nk
anchrol e CDATA "nme source #AGG'
HyNames CDATA "linkends source"
sour ce | DREF #REQUI RED
space (space | noSpace) space
normalize (normalize | noNornelize) noNornalize
>
21 | <!-- relationship Application of relationship applies to hotspots in
The relationship formconforns to the architecture for a HyTine text and graphics. In the case of graphics, the

ilink. It expresses an authored relationship between two identified
objects. The application nmust provide its own element and attribute
decl arations for hyperlinking according to the HyTime standard. This
pseudo-decl aration is provided as a nodel for the HyTime ilink. The
generic identifier of the relationship governs the relationship
semanti c

The traversal semantic of the relationship is governed by the
traversal attribute. |If traversal is set to be undefined, traversa
decisions will be left up to the application

Attributes may be added to change traversal from hotspot marking
(interrupt) to hotspot information by request only (polling). This
woul d prevent hotspot clutter in an on-line index, for exanple.

<lelenent relationship - O (title, (%ocs;)*)>
<lattlist relationship
HyTi me NAME il i nk

identification of an object tolink tois via a
notation (i.e., nanes of objects/zones nust be
avail abl e through a notloc).

A rel ationship of traversal type ‘gosub’ to a script
will be treated like a function call, except that the
script is lexically contained only within the MD
instance, not within the other end of the

rel ationship, and not at its own location within the
SGWL instance (because its container nmight not have
been fl owed).

Note that relationship is an architectural form

17

MID-2 (3/96)

M D NAME #FI XED rel ati onshi p

rel ati onshi pName #CDATA #FI XED

id | D # MPLI ED

anchrol e CDATA #FI XED "ant ecedent #AGG consequent #AGG'

I'i nkends | DREFS #REQUI RED

privTrav NAMES #| MPLI ED

extra NAMES #| MPLI ED

intra NAMVES #| MPLI ED

endt ernms | DREFS #l MPLI ED

aggtrav NAMES agg

traversal (gosub | spawn | goto | undefined) spawn
>
-->

<!-- CONTROLS -->

<l-- nenu

This el ement declares a named and | abel ed menu of menus and menu
items. |f disable is specified, the nenu |l abel will be visible but
the menu will be inaccessible ("grayed out"). The nenu will be
rendered when its label is selected froma rendered parent nmenu or
menubar. -->

<l ELEMENT nenu - O (label, (nenu | button | buttonGroup)*) >
<! ATTLI ST nenu

id ID #l MPLIED

enabl e (enable | disable) enable

>

<l-- setState #Note: There is an anbiguity here concerning the scope
This el enent indicates that the state of the target object should be of setState on a menubar (in global or local pool). A

nmodi fied according to the attributes and content specified. Possible setState may apply to all instances of the menu in every

targets: menubar, menu, button, buttonG oup. Mre conplicated scope, or may be limted to the current scope.

substitutions should use the functionality provided by
condi ti onal W dget .

The toggle attribute tells whether the target should be toggled on,
toggl ed off, that the toggle should be renpbved, or that no change to
the toggl e shoul d take place.

The enable attribute tells whether the target should be enabled or
di sabled ("grayed out") or that no change shoul d be made.

The action attribute tells whether to nodify the target, to renpve the
target fromits position, or to reset the target to its initial
settings.

The content attribute tells howto treat the content of the setState

el enent. The subel ements may be inserted before the target, after the
target, or replace the target entirely. Replacing itenms on the nmenubar
with a buttonGoup is not allowed. -->

<! ELEMENT setState - O (nmenu | button | buttonGoup)* >

18 MID-2 (3/96)

<I ATTLI ST set State
target | DREFS #REQUI RED
toggle (toggleOn | toggleOf | renpveToggl e | noToggl eChange)
noToggl eChange
enabl e (enable | disable | noEnabl eChange) noEnabl eChange
action (nodify | remove | reset) nodify

content (insertBefore | insertAfter | replace) replace
>
25 <l-- button
A button represents a user interface activation control. The script
is run when the button is activated. |f specified, the name of the
button nmust be unique within a button group. |If toggleOn is
specified, the button is rendered with a "toggled on" representation.
If toggleOf is specified, the button is rendered with a "toggled off"
representation. |f disable is specified, the button will be visible
but it will be inaccessible ("grayed out"). -->
<! ELEMENT button - O (|abel?, script) >
<! ATTLI ST button
id ID# MPLIED
name NAME #| MPLI ED
toggle (toggleOn | toggleOf | noToggle) noToggle
enabl e (enable | disable) enable
>
26 <l-- fillin
Afillin represents a fill-in-the-blank widget. The initial value
of the variable provides the initial text. Wen noEcho is
specified, the user's input is not echoed to the display (e.g., for
entering passwords). -->
<l ELEMENT fillin - O (label, variable) >
<IATTLIST fillin
id ID#l MPLIED
echo (echo | noEcho) echo
>
27 <!-- dynami cLi st

A dynami cLi st represents a wi dget which allows a user to assign a
value to a variable. Wen encountered, the label is rendered to nane
the widget. The expr is evaluated; the results becone the option

list, and the option list is rendered. |f notRestricted is specified,
the user may enter a value which is not on the option list. The
script gets run when the user makes a selection. -->

<! ELEMENT dynami cList - O (variable, |abel?, expr, script) >
<! ATTLI ST dynami cLi st

type (pickOne | pickMany) pickOne

restricted (restricted | notRestricted) notRestricted
>

19

MID-2 (3/96)

28 <l-- labe
A label is made up of any conbination of retrieved text, the results
of evaluation of expressions, parsed character data, and icons. It is
rendered when its container is rendered, in such a way as to preserve
the semantic of grouping.-->
<! ELEMENT | abel - O (get | expr | #PCDATA | icon)* >
29 <!-- DATA TYPES -->
30 <l-- text
G oups text items. -->
<l ELEMENT text - O (get | expr | #PCDATA | special Text | title
paragraph | orderedList | unorderedList)* >
<! ATTLI ST text
id ID#l MPLIED
>
31 | <I-- special Text Types _ _ _ special Text will be used for semantic indications
Lists the types of text which are recognized as special. --> The type may be associated to a particul ar appearance
_ in the browser by an external stylesheet.
<IENTITY % speci al Text Types
"vi sual Punch | foreignWrd | semanticStress | newTerm | The potential that there is a hotspot on a
bi bl i ogr aphi cRef erence | speci al Text is determ ned purely by the ilink
wor dAsWword | wordAsDefinition | infornal Nane | properCbject | (relationship) that points to it, and not by reason
mat hExpressi on | acronynExpansi on | anchor | none" > of its being special Text.
<! -- special Text
Indicates that the contained text is qualified by sone semantic
-->
<! ELEMENT special Text - O (get | expr | #PCDATA | special Text)* >
<! ATTLI ST speci al Text
id ID#l MPLIED
type (%speci al Text Types;) none
>
32 <l-- title
Title indicates the title of the object which contains it. It is
al ways to be rendered in such a way as to indicate that association
The contents of the title element are eval uated and concatenated in
the order that they appear. -->
< ELEMENT title - O (get | expr | #PCDATA | special Text)* >
33 <! -- paragraph

I ndi cates the contained text is regarded and rendered as a
paragraph. -->

20

MID-2 (3/96)

<! ELEMENT paragraph - O (get
<! ATTLI ST par agr aph
id ID#l MPLIED

expr | #PCDATA | special Text)* >

>
34 | <!-- orderedList, unorderedList))) « orderList, unorderedList are not affected by the MD
These represent two types of |ist. An ordered Iist is typically support attribute for Iist. The support option |ist
rendered with ascending identifying nunbers, letters, etcetera. An applies to the use of only the function type and
unordered list is typically rendered with bullets instead. Itens in varible type “list”. See also el ement #9, page 13.
either kind of list nmust be rendered in the order they appear
lexically. -->
<! ELEMENT (orderedList | unorderedList) - O (title?, item) >
<I ATTLI ST (orderedLi st | unorderedList)
id ID #l MPLIED
>
35 | <l--item)) + orderlist, unorderedList are not affected by the MD
Represents a list item --> support attribute for list. The support option list
_)) applies to the use of only the function type and
<IELEMENT item- O (get | expr | #PCDATA | special Text | orderedList | varible type “list”. See also el enent #9, page 13.
unor der edLi st)* >
36 <! -- EXTERNAL NOTATI ONS -->
37 <l-- icon, graphic, audio, video, aninmation
Access to external notations is made fromthese el erents. -->
<IELEMENT (icon | graphic | audio | video | animation) - O (get |
expr)* >
<I ATTLIST (icon | graphic | audio | video | animation)
id ID #l MPLI ED
>
38 <!-- TABLE ELEMENT TYPES -->
39 <l-- tabl eTypes
The table entity is used to allow the application to substitute any
table type into the pane declaration.-->
<IENTITY % tabl eTypes "fcsTabl e" >
40 | <!-- fcsTable _ o _ + Note that fcsTable is a very general, and non-
The fcsTable conforms to the HyTime finite coordinate space. It i npl ementation specific way to represent data that is

expresses the abstract |ayout of a table wi thout inposing assunptions
about how the tabular information will be rendered or used. To

impl enent fcs tables, applications rmust inmplenment the foll ow ng
architectural forns as required by the HyTi ne standard: fcs, evsched,
axis, event, extlist, neasure, granule. The el enent declarations

typically rendered in tables. The table type is in an
overrideable entity in order to allow interimuse of
nmore conventional tables in the name of expediency.

21

MID-2 (3/96)

bel ow are provi ded as exanples that conformto the needed HyTi ne
architectural forms; they will be recognized by conform ng HyTi me
engi nes.

The fcsTabl e el ement contains event schedules. Its axisdefs attribute
lists the generic identifiers of the axes that make up the space. The
event el enments contained in evscheds are schedul ed on each of the axes
of the fcs. -->

<! ELEMENT fcsTable - O (evsched+) >
<! ATTLI ST fcsTabl e

HyTi me NAME fcs

M D NAME fcsTabl e

id ID #l MPLIED

axi sdef s CDATA #FI XED "x y"
>

41 <!-- Each axis is declared with a specific neasurenent domain (here,
virspace) and with a specified dinension.
Specific axes with specific axis dinmensions nust be declared for each
instantiation of table type. The fcsTable and the evsched refer to
the generic identifier of the desired axis.
NOTE: The axis dimensions "4" and "5" are exanpl e di nensi ons.
Particul ar tabl es may have any dinension required, theoretically up to
the the high quantum count value in HyTine. -->
<l ELEMENT x - O EMPTY >
<! ATTLI ST x
HyTi me NAME axi s
M D NAME axi s
axi smeas CDATA #FI XED "vi r space"
axi sdi m CDATA #FI XED "4"
>
< ELEMENT y - O EMPTY >
<! ATTLI ST y
HyTi me NAME axi s
M D NAME axi s
axi smeas CDATA #FI XED "vi r space"
axi sdi m CDATA #FI XED "5"
>
42 <l-- The axisord attribute of the evsched el enent type dictates the order

in which dinension specifications are to be listed in the extent |ist
extlist of every event: first the spec for x, then the spec for y.

The #FI XED val ue of the basegran attribute of evsched establishes a
base neasurenent unit for scheduling, in this case a "virtual space

22

MID-2 (3/96)

unit" (vsu). -->

<! ELEMENT evsched - O (event)* >
<! ATTLI ST evsched
HyTi me NAME evsched
M D NAME evsched
id | D # MPLI ED
axi sord CDATA #FI XED "x y"
basegran CDATA #FI XED "vsu"
gran2hmu NUMBERS #FI XED "1 1"

overrun (error | wap | trunc | ignore) error
>
43 <l-- event, extlist
The event and extlist elenments are used by fcs but do not require
specific-case architectural forminitialization. They nmay be used as
t hey appear below. -->
<! ELEMENT event - O (get | expr | #PCDATA)* >
<! ATTLI ST event
HyTi me NAME event
id ID #l MPLIED
exspec | DREFS #REQUI RED
>
<l ELEMENT extlist - O (#PCDATA) >
<! ATTLI ST extli st
HyTi me NAME extli st
id ID #l MPLIED
>
44 <!-- neasure, granule

The evsched el enent formrequires a neasure definition to occur
sonewhere in the docunent. The following one is an mnimal exanple.

<neasur e smu=VlI RSPACE>
<granul e gn=vsu gd="1 1 VI RSPACE" >
</ measur e>

-->

<! ELEMENT neasure - O (granule+) >
<! ATTLI ST neasure

HyTi me NAME neasure

id | D # MPLI ED

smu NAME #REQUI RED
>

<! ELEMENT granule - O EMPTY>
<! ATTLI ST granul e
HyTi me NAME granul e

23

MID-2 (3/96)

gn CDATA #REQUI RED
gd CDATA #REQUI RED
>

45 <l -- SENMANTI C GROUPI NG - ->
46 <I-- paneG oup
Panes are grouped with sone semantic intention of the author. They
are rendered with a title when encountered. -->
<! ELEMENT paneGroup - O (title?, (pane | paneGoup | conditional Pane)*
>
<I ATTLI ST paneG oup
id | D #l MPLI ED
>
47 <!-- wi dget G oup
A widgetGoup is an optionally |abeled group of widgets. Al of its
contents are rendered when encountered. The optional script is run
after rendering the wi dget group, in order that setState may be called
to set the toggled wgets. -->
<! ELEMENT wi dget Goup - O (| abel ?,
(widgetGoup | conditional Wdget | buttonGoup | dynam cList | button
fillin)*, script?) >
48 <!-- buttonG oup
Represents a | abel ed group of buttons. The senmantic of the grouping
is expressed in the type attribute. An indication of pickOne neans
only one button in the group nay be selected. An indication of
pi ckMany means any nunber may be selected. |If a default is specified
the naned buttons are preselected. |f no default is specified and the
type is pickOne, the first button is preselected. -->
<! ELEMENT buttonGoup - O (l|label?, button*) >
<! ATTLI ST buttonG oup
id 1D #l MPLI ED
type (pickOne | pickMany | button) button
defaul t NAMES #l MPLI ED
>
49 <l -- nenubar
This el ement declares a nmenu bar as a collection of menus and
buttons. The nenubar will be rendered when an infoContainer that

points to it via its menubar attribute is rendered.-->

<! ELEMENT nenubar - O (nenu | button)+ >
<! ATTLI ST nenubar

id ID # MPLIED
>

24

MID-2 (3/96)

50

<!-- CONDI TI ONALS -->

51 | <!-- conditional Pane Condi ti onal panes are intended to be used for
When a conditional Pane is encountered, the expression is eval uated. alternate displays of panes, as in alternate |anguage
Each successive expression is evaluated until one is equal to the presentation, rather than to inplenent preconditions
first. The paneGroup corresponding to the match is rendered. |If no such as those found in M L-D 87269; a conditional
expressions match, the final paneGoup, if present, is rendered as a pane is not intended to be the inplementation of an
default. This construct is reeval uated when a reflow command is if-step, nor is it intended to allow an entire
issued for this element or an element in the proper ancestry of this interactive electronic technical manual to be
element. --> implenented with a single infoContainer.
<! ELEMENT condi ti onal Pane - O (expr, (expr, paneGoup)*, paneG oup?) >
<! ATTLI ST condi ti onal Pane
id ID# MPLIED
>
52 <!-- conditional Wdget
When a conditional Wdget is encountered, the first contained
expression is evaluated. Each successive contained expression is
evaluated, in order, until one is equal to the first. The w dget G oup
corresponding to the natch is rendered. |f no expressions natch,
the final contained widget group (if present) is rendered as a default.
-->
<! ELEMENT condi ti onal Wdget - O (expr, (expr, w dgetG oup)?*,
wi dget Group?) >
<! ATTLI ST condi ti onal W dget
id ID# MPLIED
>
53 <l-- reflow
When a reflow is encountered, the entire subtree of the target of
the reflow statenment is rendered again. The target nust be sonething
in the current infoContainer, and all current states within the scope
of the infoContainer will be respected. When no target is specified,
the entire current infoContainer will be rendered again. |If nultiple
targets are specified they are rendered again in the order given. -->
<! ELEMENT reflow - O EMPTY >
<! ATTLI ST refl ow
target |DREFS #l MPLI ED
>
54 <!-- SCRIPTING -->
55 | <I-- script If you GOTO froma script, the flowis term nated,

Scripts are eval uated depending on their context. First the
decl arations are evaluated, then the statenents. The return type for
the script is specified using the functionType attribute. -->

<! ELEMENT script - O ((vardecl | funcdecl | xenodecl)*, statenents) >

pt,
and statenents logically follow ng the GOTO will not
be execut ed.

25

MID-2 (3/96)

<I ATTLI ST scri pt
id ID#l MPLIED
functi onType (% unctionTypes;) atom

#Not e: There appears to be no need for functionType
because everything that catches a return froma script
could catch the return fromwhat contains the script

>
(e.g., a pane has a functionType al ready).
56 | <!-- name)))) + Name shoul d resolve to #PCDATA (preferred) or
The name of a function, variable, xenodecl, or scriptLabel is strings. Developers will expect ‘get’ to return only
created by evaluating the contained elements in the order they appear these types. The application should be prepared to
and concatenating the results. handl e variable, argunent, scriptLabel, and xeno
_) o) function nanes in the character set of the MD
After the data is concatenated, |eading and trailing whitespace docunent
characters are ignored, and nultiple whitespace characters are
repl aced by a single space. SGW. NAME characters are folded according . Enpty names are not particularly desirable
to the NAMECASE GENERAL paraneter of the governing SGW declaration.
S #Not e: The range of character sets in a M D docunent
shoul d be defined to guard agai nst inplementation
<I ELEMENT name O O (get | expr | #PCDATA)* > spfcific requirenents driven by differing character
sets.
57 <l-- statenents
Statenents are evaluated as directed by the context, in the order
t hey appear.
NOTE: Al though the absence of this container would not create
anbiguities in the MD | anguage (i.e., this container is redundant),
it is provided as a convenience to MD script interpreters. -->
<! ELEMENT statenents O O
(expr | if | loop | break | switch | junp | scriptLabel | goto | spawn
return | reflow | nessageArea | setState)* >
58 <! -- DECLARATIONS -->
59 <!-- Declarations
Decl arations are processed and bound to the declared nanmes in the
order the declarations are encountered. |f a variable declaration

initializer contains a reference to another variable, the other
variabl e must have been declared and initialized prior to the
referring declaration. -->

<!-- vardec

The vardecl elenent binds a name to a run-tinme storage |ocation
Vari abl es nust be decl ared before use. The expr initializes the
variable. The variabl eType attribute specifies the type of the
variable. Every variable type has a default initialization: zero for
integer and float types, false for boolean, and null for list and
string. The default sgmchar is zero. A local name which is the sane
as a nanme decl ared higher in the scope stack renders the hi gher naned
obj ect unreferenceable (the local nane is said to "shadow' the higher
one). -->

26

MID-2 (3/96)

<! ELEMENT vardecl - O (name, expr?) >
<! ATTLI ST var decl

vari abl eType (%ari abl eTypes;) string
>

60 <!-- funcdecl
The funcdecl elenent binds a function name with argument list, |ocal
state and statenent list. Vardecl names shadow argdecl names. The
nurmber of argunments, their types, and their order are always fixed.
The functionType attribute specifies the return type of the function.
-->
<! ELEMENT funcdecl - O (nane, argdecl*, vardecl*, statenents) >
<! ATTLI ST funcdecl
functi onType (% unctionTypes;) atom
>
61 | <!-- argdecl) « Note that the M D DTD does not support default val ues
The argdecl el enent binds an argument nane to a passed val ue. of arguments. The function call should contain
Argunments to functions are passed by value. --> exactly as many arguments as the funcdecl specifies,
or the MD script is in error.
<! ELEMENT argdecl - O (name) >
<! ATTLI ST ar gdecl
vari abl eType (%vari abl eTypes;) string
>
62 <!-- STRING and LI ST OPERATI ONS -->
63 <l-- stringOperations #Note: A new function, CharAt(string, pos), is under
The operations specific to string nmanipulation are collected here. consi deration, which returns a (sgnml)char in a specified
--> position froma string. This can be acconplished with my
proposed casting by doing substr and then casting the
<IENTITY % stringOperations "strlen | substr | strcat | fold | isnull | result to a char.
isstring" >
64 <l-- |istQOperations #Note: As noted under cons el enment below, this function
The operations specific to list manipulation are collected here. can be performed as a special case of append.
-->
<IENTITY % |listQOperations "list | cons | car | cdr | append | isnull |
islist | nth | count" >
65 <l-- expr

The expr elenent is evaluated as one of its contained el enents.

copy of the result is returned.

NOTE: Al though the absence of this container would not create

anbiguities in the MD | anguage (i.e., this container

it is provided as a convenience to MD script

interpreters.

-->

A

i s redundant),

. Casting reconmendations are shown in the prinitives
entity declaration.

27

MID-2 (3/96)

<! ELEMENT expr - O (assign | variable |

constant | function |

add | multiply | subtract | divide | mbdulus | eq | It | gt | le | ge |
and | or | ne | not | gettype |
Y%stringOperations; | %istQperations; | gosub) >
66 [<!-- variable Variable will be searched in nearest lexically
The contents of the storage bound to the name are returned to the encl osi ng scope. For exanple, if the reference is
caller. --> inside of a function, but the variable is not within
_ the function, then the scope of the pane containing
<! ELEMENT variable - O (nane) > the function will be tried next, then the
i nf oCont ai ner containing the pane, then the MD
itself (ie, the declarations directly in the nmd
el enent) .
67 | <!-- assign)) Inplicit casting will be performed as necessary by
The expression is evaluated and the results are placed in the the script interpreter.
variabl e storage bound to the nane. -->
<! ELEMENT assign - O (nane, expr) >
68 | <!-- function _ _ _ Default arguments are not supported; the function
The argunents are evaluated in the order in which they appear and call should have the same nunber of argunents as the
the results are passed as argunents to the naned funcdecl or xenodecl. function declaration had.
-->
Argunment types should match decl arations, or should
<! ELEMENT function - O (name, argument*) > be designed in accordance with known casting rules
(coercible)
69 <I'-- argument
The expression is evaluated as the argument passed to a
function. -->
<! ELEMENT argument - O (expr) >
70 <!-- add, nultiply, subtract, divide, nodulus, eq, It, gt, le, ge,

and, or, ne, not
The expressions are eval uated and the
to the data type. -->

< ELEMENT (add | nultiply) - O (expr+)
<! ELEMENT (subtract | divide | modul us)

operation is applied according

>
- O (expr, expr) >

<IELEMENT (eq | It | gt | le| ge | and | or) - O (expr)+ >

<! ELEMENT ne - O (expr, expr) >
<! ELEMENT not - O (expr) >

Nureric operations (add, nmult, sub, div, mod) should
have nuneric argunents (int32, uint32, int64, uint64,
float32, float64).

Lexi cographical relations (It, gt, le, ge) may be
used on two nuneric args, two sgnlchar args, or two
string args. SGWML.Char can be conpared to any string
whose length is one.

Bool ean operations (and, or, not) should have bool ean
argunents (bool ean).

28

MID-2 (3/96)

. Equal ity operators (eq, ne) can have argunents in
several categories (including chars, strings, lists,
nureric, boolean). Strings and lists should only be
conpared within their own type. Nuneric/bool ean types
can be conpared (casting rules will apply). SGWChar
can be conpared to any string whose length is one.

. The application is expected to inplenent all
arithmetic results, including inplenentation
dependent ones, so that (eq a b) will be true if and
only if (ne ab) is false, for any a and b.

. Lexi cographi cal conparison of chars or strings needs
to be standardi zed. For now, assune that a char may
be conpared | exicographically with a string, with the
proviso that (e.g.) ‘f’' precedes ‘fa’.

. Simlarly, a char may be conpared for equality with a
string of length greater than one - it will be
unequal .

#Note: There is a difficulty if one string (or char) is
froma different notation than the other. Then the
results are inplenentation dependent.

#Note: Addition of Bitw seAnd and Bitw seOr operators
(or equivalents with better nanes), whose argunents
shoul d be integers, is under consideration.

71

<!-- constant
The contents are evaluated and a value of the given constant type is
constructed. The contantType attri bute specifies the data type.

The regul ar expressions and semantics for the MD primitives are as
follows, with keywords and letters folding case by the rule of the
SGWML nanecase.

bool ean
("true"|"false"|"1"|"0"|"yes"|"no")

"true", 1, and "yes" are equivalent; "false", 0, and "no" are
equi val ent .
We declare the followi ng as shorthand:
DAT=("0"|"2"|"2"|"3"|"4"|"5"|"6"|"7"|"8"]|"9")
NZDIG T = ("1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9")
int32, int64
("+"|"-")?, NzDIGT, DG T*

These constants are base 10 representation only. "+" indicates

positive; "-" indicates negative.

ui nt 32, uint64
NZDIA T, DA T*

. Strings or lists with nothing in themare null.

. Enpty constants of type nunber or bool ean are
di scouraged, and nmight not be handl ed consistently by
sof tware applications.

. ‘get’ as an elenment of a constant should point to
#PCDATA, or a notation.

. If get as an elenment of a constant points to a
function call, it should be a call to a xeno

function, and the M D author should be indifferent as
to whether the application evaluates the constant by
calling the xeno function only the first time, or
every tine.

. Be sure to fold with normalize ‘on’ before using

strlen, substr, or isnull if you want to get a length
or sub without the CR, LF, RS, RE, etc. Oherw se
these will include the CR, etc in the string.

29

MID-2 (3/96)

These constants are base 10 representati on only.

float32, float64

("+"|"-")?, DAT+ ".", DAT+, ("e", ("+"|"-")?, NZDIGT,
DAT*)?
The "e" neans "tinmes-ten-to-the". Digits are required on both sides

of the decimal point. The mantissa is represented in 16 bits for
float32, and 32 bits for float64. The renmaining bits are reserved for
t he exponent.

sgnl char
And any single valid sgm character

string
any valid string of sgnml characters

NOTE: In string and sgm char, record start (RS) and record end (RE)
are ignored according to the rules in | SO 8879.

-->

<! ELEMENT constant - O (get | #PCDATA)* >
<I ATTLI ST const ant
const ant Type (%onst ant Types;) #REQU RED
normalize (normalize | noNormalize) noNornalize
recordDelimter (recordDelimter | norecordDelimter) recordDelinmiter

>
72 <l-- if, else
If the expression evaluates to true, the statenents in the
statements el ement are executed. Oherw se, the statements within the
el se are evaluated. -->
<IELEMENT if - O (expr, statenents, else?) >
<! ELEMENT else - O (statenents) >
73 | <l-- loop o o The expr in 'if’ or ‘loop’ should be bool ean or
The expression is evaluated. |f the expression is true, the nunmeric. Casting applies in the nuneric case.
statements are executed. The expression is reevaluated and the
statements are re-executed until the expression returns false. --> Junps in and out of |oops are prohibited. The stack
will be busted if you try this, thereby causing nmuch
<! ELEMENT | oop - O (expr, statenments) > weapi ng and finger pointing by the progranmm ng staff.
74 <l-- continue, break

Conti nue causes execution to resune at the top of the nearest
encl osi ng | oop, whereupon the loop's expr is reevaluated. As always,
if the expr evaluates to fal se, execution resunes at the statenent
followi ng the | oop. Break causes execution to resune at the statenent

30

MID-2 (3/96)

follow ng the nearest enclosing loop or switch. [If there is no
lexically enclosing loop, continue is ignored. |If there is no
lexically enclosing loop or switch, break is ignored. No stacks are
affected. Junping to a point within a loop initiates |ooping
behavior. Jumping to a point within a switch causes the switch's expr
to be evaluated automatically prior to execution of any statenents.
-->

<l ELEMENT (continue | break) - O EMPTY >

75 | <!-- switch, case, default) « Seerules for ‘eq” in regard to expression
The expression is evaluated. Each of the expressions of the cases conpari son.
is evaluated in the order in which the cases appear until one nmatches
the switch expression. |If a match is found, the statenents under the
mat ched case are executed until a break is encountered. Control
continues to the statements under the next case if no break is
encountered; the interceding expr is not evaluated. |If no case
expression is matched, the default statements are executed.-->
<l ELEMENT switch - O (expr, case*, default?) >
<! ELEMENT case - O (expr, statements?) >
<! ELEMENT default - O (statements?) >
76 <l-- junp, scriptLabel
Control imediately junps to the named script label. Certain
restrictions apply: script |labels are scoped local to a given
script. -->
<! ELEMENT junmp - O (nane) >
<! ELEMENT scri pt Label - O (nane) >
77 [<!-- gettype)) « The string will be exactly as listed in the original
Returns the type of the expression. Return type: string. --> primtives and variabl eTypes entity declarati ons.
<! ELEMENT gettype - O (expr) >
78 <!-- STRI NG OPERATI ONS - - >
79 <l-- strlen
Returns the length of the string. Return type: uint32. Returns zero
as a 'reportable MD error’ if expressionis not a string. -->
<! ELEMENT strlen - O (expr) >
80 | <!-- substr « First expr nust be a string. Second and third expr

First expr: string. Second expr: start position. Third expr: run
length. This construct returns the substring of the string, given
start position and run length. Start position is counted from 1.

nmust be nuneric.

31

MID-2 (3/96)

Unspecified run length or run length greater than the length of the
string indicates the rest of string. Returns null string if start
position exceeds string length. Return type: string. -->

<! ELEMENT substr - O (expr, expr, expr?) >

81 <l-- strcat
Returns the concatenation of the strings. Expressions in this
el enent's i medi ate content which evaluate to non-strings are ignored.
If space is specified, a space character is inserted between
expressions. |If normalize is specified, leading and trailing white
space is renmoved, and nultiple contiguous spaces are converted into a
si ngl e space.
Return type: string. -->
<! ELEMENT strcat - O (expr)+ >
<I ATTLI ST strcat
space (space | noSpace) noSpace
normalize (normalize | noNormalize) noNornalize
recordDelimter (recordDelimter | norecordDelimter) recordDelinmiter
>
82 <l-- fold
Returns the fol ded version of the string. Converts string to
uppercase using SGW nane case folding rules. The nanme attribute
tells whether the nane characters are to be folded according the SGW
declaration rules for entity names or for general names. Return type:
string. -->
<! ELEMENT fold - O (expr) >
<! ATTLI ST fold
name (general | entity) general
normalize (normalize | noNormalize) noNornalize
recordDelimter (recordDelimter | norecordDelimter) recordDelinmter
>
83 <l-- isnull
This function returns true if the expression is a null (enpty)
string or a null list. It returns false otherwise. Return type:
bool ean. -->
<l ELEMENT isnull - O (expr) >
84 <l-- isstring

Ret urns whether the expression is a string. Return type: bool ean.
-->

<! ELEMENT isstring - O (expr) >

32

MID-2 (3/96)

85 <!-- LI ST OPERATION\S -->
86 | <!-- list)))) + Each expression creates a single el ement (which could
Each expression in the content of this elenment is evaluated and be another Iist).
becones an top-level itemon the returned list. |If no expressions are
specified, this element returns a null list. Alist in MD has the
sane binary tree inplenentation as lists in Lisp or Prolog. Return
type: list. -->
<IELEMENT list - O (expr)* >
87 <l-- cons #Note: cons is somewhat redundant and nay be renpved
This function returns a list in which the result of evaluating the fromDTD at a future date. Because we only allow cons
first expression is prepended to the list found in the second when the second elenent is a list,
expression. The second expression nust be a list. Return type: list.
(cons (a) (b))
NOTE: The_ names cons, car, and cd_r, whi |l e perhaps non-intuitive in can be acconplished as
English, is precisely nmeaningful in LISP; they were chosen
deliberately to enhance interdisciplinary communications. --> (append (list (a)) (b))
< ELEMENT cons - O (expr, expr) > where in both cases b is constrained to be a list.
88 <l-- car
This function returns the car of the list, i.e, the first itemof a
cons pair. The expression nmust be a list. Return type: any. -->
<! ELEMENT car - O (expr) >
89 <l-- cdr
This function returns all but the first itemin a list (the second
half of a cons pair). Return type: list. -->
<! ELEMENT cdr - O (expr) >
90 | <!-- append _ _ _ + Both expressions nust be lists. The second expr is
This function returns the results of appending a list to a list. appended to the first.
Return type: list. -->
#Note: A generalized append could be specified with a
<! ELEMENT append - O (expr, expr) > content nodel of (expr, expr+).
91 <l-- islist
This function returns true if the expression is of type list.
Return type: boolean. -->
< ELEMENT islist - O (expr) >
92 <!-- nth

33

MID-2 (3/96)

exprl: list. expr2: integer. Returns the nth itemof the list,
counting fromone, without recurring into nested lists. Returns the
null list if there is no such item Return type: atomor list. -->

<l ELEMENT nth - O (expr, expr) >

93 <!-- count
Returns the nunber of itenms in the given list, w thout recurring
into nested lists. Returns zero if expression is a list which has no
menbers. Return type: uint32. -->
<! ELEMENT count - O (expr) >
94 <! -- EXTERNAL PROCESS - - >
95 <!-- xenodecl
The xenodecl el enent binds a name and argunent declarations to a
call to an external notation. The functionType attribute specifies
the return type of this construct.-->
<! ELEMENT xenodecl - O (nane, argdecl*, xeno) >
<! ATTLI ST xenodecl
functionType (% unctionTypes;) atom
>
96 ([<!-- xeno « Xeno functions are intended as a catch-all for

The xeno el enment represents a subclass of the HyTi me notl oc.
Argunment names fromthe containing xenodecl indicate substitution into
t he RCDATA of the xeno when the argunment nanme is surrounded by the
string tokens specified in argBegin and argEnd. -->

<! ELEMENT xeno - O RCDATA >
<! ATTLI ST xeno
HyTi me NAME not | oc
id ID#l MPLIED
gdonmi n | DREFS #| MPLI ED
qcont ext | DREF #| MPLI ED
ordering (ordered | noorder) noorder
set (set | notset) notset
aggl oc (aggloc | agglink | nagg) nagg
ar gBegi n CDATA "$("
argénd CDATA ")"

functions that are not included in the MD. The
referenced notation defines the standard way that the
xeno is to be inplenmented in practice. |In the near
term this may require that authors make assunptions
about platforms, and deliver code (DLLs) to execute
their functions in order to handle any returns
needed.

#Not e: Support nanmes nmay be needed for specific formats
of graphics, text, audio, video, etc. These indicate a
requirement for M DReaders where there are well-known
notations that do not need a specific author-defined
xeno to execute. Use public notations where avail abl e,
and name themin support declaration. Exanples: BMP,
JPEG CGM TIFF, WW.

#Note: A standard notation for DLLs may be useful.
Define in terns of a string that can be passed via the
RCData in the xeno:

DLL Name
Function entry point nane
Nunmber of argunents

Argunment types and nanes

MID-2 (3/96)

Arguments in specific order
Return type

Cal ling convention

97

<l-- return

This el enent term nates processing of the nearest containing
construct specified by the construct attribute, and returns the val ue
resulting fromevaluating the expression. |If there is no expression,
the return value is the default initialization for the stated return
type. -->

<! ELEMENT return - O (expr?) >
<I ATTLI ST return
construct (mid | chain | infoContainer | pane | alert | script |
function) function
>

Care should be exercised to insure that a return
references a lexically enclosing construct. For

exanpl e, an infocontainer may not call a global I|evel
function and have the global I|evel function end the
infocontainer with a <return construct=infocontai ner>

A <return contruct=script> when executed within a
function is equivelant to a <return
contruct=function>. If a return with construct=script
is executed outside a function, its result will be to
term nate the script.

98

<!-- HYTIME -->

99

<l-- security

Security is an inplenmentation of the HyTime activity form The
security attribute tells what |evel of security. Elements md and
pane may point to a security element, thereby indicating the security
level . The contained script (if any) will be run when the indicated
activity (in this case, access) occurs.-->

<! ELEMENT security - O (script)? >
<I ATTLI ST security

id |D # MPLI ED

HyTi me NAME activity

act ypes NAMES access

level (unclassified | confidential | secret | topSecret) unclassified
>

100

<l-- The followi ng HyTinme | ocation types are instantiated directly
fromthe HyTine standard. -->

101

<! ELEMENT naneloc - O(nnmist | HyQ* >
<! ATTLI ST nanel oc
HyTi me NAME nanel oc
id I D#REQU RED
ordering (ordered | noorder) noorder
set (set | notset) notset

aggl oc (aggloc | agglink | nagg) nagg

102

<IELEMENT nmiist - O (#PCDATA) >
<! ATTLI ST nmi i st

35

MID-2 (3/96)

HyTi me NAME nnmi i st

narmetype (entity | elenent | unified) #REQU RED
obnames (obnanmes | nobnanes) #REQUI RED

docorsub ENTITY #l MPLI ED

dtdor| pd NAMES #| MPLI ED

103

<!
<!

ELEMENT HyQ - O (#PCDATA) >
ATTLI ST HyQ

HyTi me NAME nnguery
gdomai n | DREFS #| MPLI ED
qcont ext | DREF #| MPLI ED
not ati on NAME #FI XED HyQ
del i ms CDATA #l MPLI ED

fn NAME #| MPLI ED

usef n NAVE #CONREF

args | DREFS #l MPLI ED
gpnpsn NAMES #| MPLI ED

gl tnl mgi NAMES #| MPLI ED

104

<!
<!

ELEMENT treeloc - O (marklist*) >

ATTLI ST treel oc

HyTi me NAME treel oc

id I D #REQU RED

overrun (error | wap | trunc | ignore) error
treecom (treecom| ntreecon) ntreecom

| ocsrc | DREFS #| MPLI ED

ordering (ordered | noorder) noorder

set (set | notset) notset

aggl oc (aggloc | agglink | nagg) nagg

105

<!
<!

ELEMENT relloc - O(dimist*) >

ATTLI ST rell oc

HyTi me NAME rell oc

id I D#REQU RED

root | DREFS #| MPLI ED

relation (anc | esib | ysib | des | parent | children) parent
overrun (error | wap | trunc | ignore) error

| ocsrc | DREFS #| MPLI ED

ordering (ordered | noorder) noorder

set (set | notset) notset

aggl oc (aggloc | agglink | nagg) nagg

106

<!
<!

ELEMENT dataloc - O (dimist*) >
ATTLI ST dat al oc

HyTi me NAME dat al oc

id | D #REQU RED

36

MID-2 (3/96)

quantum (str | norm| word | name | sint | date | tine | utc) str

catsrc (catsrc |
catres (catres |
overrun (error |

nocat src) nocatsrc
nocatres) nocatres
wap | trunc | ignore) error

| ocsrc | DREFS #| MPLI ED

ordering (ordered |

noorder) noorder

set (set | notset) notset
aggl oc (aggloc | agglink | nagg) nagg

107 | <! ELEMENT nmarklist O O (marklist | #PCDATA)* >
<! ATTLI ST markl i st
HyTi me NAME narkl i st
>
108 | <!ELEMENT dimist OO (dimist | marklist | #PCDATA)* >
<! ATTLI ST di i st
HyTi me NAME dim i st
>
109 | <l ELEMENT proploc - O (gpn | #PCDATA) >
<! ATTLI ST propl oc
HyTi me NAME propl oc
id | D #REQU RED
joint (joint | several) several
apropsrc (apropsrc | solesrc) solesrc
notprop (error | enpty | ignore) ignore
| ocsrc | DREFS #| MPLI ED
ordering (ordered | noorder) noorder
set (set | notset) notset
aggl oc (aggloc | agglink | nagg) nagg
>
110 | < ELEMENT gpn - O (pn, spec?)+ >
<I ATTLI ST gpn
HyTi me NAME gpn
id | D #REQU RED
>
111 | <! ELEMENT pn - O RCDATA >
<! ATTLI ST pn
HyTi me NAME pn
>
112 | <l ELEMENT spec - O ((gpn | qgltn)+ | pval) >

<I ATTLI ST spec
HyTi me NAME spec
>

37

MID-2 (3/96)

113

<! ELEMENT gl tn - O RCDATA>
<! ATTLI ST gl tn

HyTime NAME qgltn
>

114

<! ELEMENT pval - O RCDATA >
<! ATTLI ST pval

HyTi me NAME pval
>

115

<! ELEMENT notloc - O ANY >
<! ATTLI ST not | oc
HyTi me NAME not | oc
id | D #REQU RED
gdomai n | DREFS #| MPLI ED
qcont ext | DREF #| MPLI ED
fn NAME #| MPLI ED
usef n NAVE #CONREF
args CDATA #l MPLI ED
ordering (ordered | noorder) noorder
set (set | notset) notset
aggl oc (aggloc | agglink | nagg) nagg

116

<! ELEMENT bi bl oc - O ANY >
<! ATTLI ST bi bl oc
HyTi me NAME bi bl oc
id | D #REQU RED
gdomai n | DREFS #| MPLI ED
qcont ext | DREF #| MPLI ED
fn NAME #| MPLI ED
usef n NAVE #CONREF
args CDATA #l MPLI ED

38

MID-2 (3/96)

7. Alphabetical index of elements

El enent Ref
(arithmetic operator el enents) 70
alert 14
ani mation 37
append 90
ar gdecl 61
ar gunent 69
assi gn 67
audi o 37
bi bl oc 116
br eak 74
button 25
but t onGr oup 48
car 88
case 75
cdr 89
chain 12
clientArea 17
condi ti onal Pane 51
CONDI Tl ONALS 50
condi ti onal W dget 52
cons 87
const ant 71
constant Type - ENTITY 7
CONTAI NERS 10
conti nue 74
CONTROLS 22
count 93
DATA TYPES 29
dat al oc 106
DECLARATI ONS 58
def aul t 75
dimist 108
dynami cLi st 27
ENTI Tl ES 4
ENTITY % | ocs 5
event 43
evsched 42
expr 65
EXTERNAL NOTATI ONS 36
EXTERNAL PROCESS 94
extlist 43
fcsTabl e 40
fillin 26
fold 82
funcdecl 60
function 68
functionType - ENTITY 7
get 20
gettype 77
gosub 19
got o 19
granul e 44
graphi c 37
Hy Q 103
HYTI VE 98
HyTi me | ocation types 100
i con 37
if, else 72
i nfoCont ai ner 11
islist 91
i snull 83
i sstring 84
item 35
j unp 76

39

MID-2 (3/96)

| abel 28
Iist 86
LI ST OPERATI ONS 85
listOperations - ENTITY 64
I ocs 5

| oop 73
mar kl i st 107
measur e 44
menu 23
menubar 49
nmessageAr ea 16
M D 8

md 9

nane 56
namel oc 101
nnl i st 102
NOTATI ON HyQ PUBLI C 3

NOTATI ON HyTi me PUBLI C 3

NOTATI ON SGML PUBLI C 3

NOTATI ON vi r space PUBLI C 3

NOTATI ONS 2

not 70
not | oc 115
nt h 92
order edLi st 34
pane 13
paneG oup 46
par agr aph 33
pn 111
pool 15
primtives - ENTITY 6

propl oc 109
PUBLI C - M D DTD 1

pval 114
gltn 113
qpn 110
refl ow 53
rel ationship 21
rell oc 105
return 97
scri pt 55
SCRI PTI NG 54
scri pt Label 76
security 99
SEMANTI C GROUPI NG 45
set State 24
spawn 19
spec 112
speci al Text 31
speci al Text Types - ENTITY 31
statenment s 57
strcat 81
STRI NG and LI ST OPERATI ONS 62
STRI NG OPERATI ONS 78
stringQOperations - ENTITY 63
strlen 79
substr 80
switch 75
TABLE ELEMENT TYPES 38
tabl eTypes - ENTITY 39
t ext 30
title 32
TRANSI TI ONS & LI NKS 18
treel oc 104
unor der edLi st 34
var decl 59
vari abl e 66
vari abl eType - ENTITY 7

vi deo 37
wi dget G oup 47

X,y 41
Xeno 96
xenodecl 95

40

MID-2 (3/96)

MID-2 (3/96)

8. Summary of changes since original release of MID

Thisisa condensed and summarized list of changes that have been implemented inthe MID DTD asaresult of the
1995 design and devel opment efforts.

Containers
infoContainer

* menubar collected by IDREF

Added local pool for variables scoped to the infoContainer
e Hasreturntype

endic
* Removed endic element that used to indicate whento closean infoContainer. Now we have a generalized
return element for usein scripting, with a type that indicates which construct isending. Thisremovesan
artifical digtinction between return and endic, and requires fewer tags for the same functionality.
chain

* Added chain to allow author to specify a sequence of infoContainer sthat should not be entered in the
middle. Thisisto be used eg., in a procedure where users should proceed in order through a series of
procedural stepsfor safety or other reasons.

popupDialog, footerbar

* Consolidated into pane, asthese are just special cases of panes.

pane
* Removed 1,2,3,4 for pane numbering - paneGroup now allows more general specification of how panes
should be semantically grouped, rather than how they should be ordered.
* Added function type and id to attribute lig.
dert

* Moved "derttype" to attribute.

* Removed hotspot restriction.

* added alert to clientarea e ement
appGlobals

* Application globalsbecamemain pool in <mid> element.
clientArea

» Changed to allow morethan 4 panes, which can be grouped. See footer bar comment bel ow for how to
make footer bar. messageArea isretained and can be set in a script. The original script wasreally for
"process panes' which are now handled through xeno in an infoContainer

footerBar

» Deéeted footerBar element. Footer bar can berendered asa pane with a buttongroup.
messageArea

e Added "expr"
pool Container

41

popupDialog

MID-2 (3/96)

Deleted; replaced by the "pool” eement which allows for additional reusable components.

Deleted; now handled by pane with trangtion type

Transitions & Links

relationship

Added example architechtural form for elementsthat are to be used for hotspots and hypermedia webs
across documents.

hotspot
» Déeted; now handled by relationship
grotspot
» Graphic hotspot element was deleted. Thiswas atemporary element used in MID Phase 1 examples. The
function performed by the grotspot can be accomplished using the relationship element.
spawn
» Thisisanew dement typethat allows a script to launch an infoContainer whose scope is maintained
smultaneoudy with the present scope.
Controls
PickOne and pickMany
* merged into dynamicList with attribute to represent pickOne or pickMany
» pickmany and pickone (deleted. became attribute on buttongroup)
* putinfo on the button
button
» labelscan now contain iconsinstead of graphics
e defaultsin “buttongroup” can be used to define a* default” button
dynamiclist
» eement added to allow for assgnment of value to a varible based on selection of one or moreitemsfrom a
list
fillin
* added required labdl. Attribute for echo of user input was added.
is default
* removed from DTD, replaced by “ default” attribute for buttongroup element
label
» alow useof iconfor label
* reduced scripting capability
stState

can now adjust menus on the fly

42

menu
e added attrbiutesid and enable
menu item
* removed become "button" on "menubar”
menu text
* removed became "labd" on "button" on "menubar
prompt

* removed
user interaction
* removed became widgetgroup
Data Types
special Text
* added special text
» emphass (deeted. became specialtext)
* redefined as necessary text or special types
default text
* removed
fcsTable
* added fcstable types, commented example arch form

table types

* added asaoverridable entity for allowed table types. Allowsfor any table type such asCALS

Removed explicit graphic el ements
Removed explicit CALStable

animation
o attributefor id added

array
* removed, replaced by list element
graphic primitive
* removed
paragraph
» changed. "emphasis’ isnow "specialtext”, lists have been added.
title bar

deleted. becametitle

Semantic Grouping
paneGroup

43

MID-2 (3/96)

* addedto alow for grouping of like panes such asin a procedure
widgetGroup

* widget group (new) replaces userinteraction

Conditionals

Added the following new el ements:
» conditionalPane

e conditional Widget

* reflow (for conditionals)

Scripting

Scripts

* hasreturntype

name (changed. end-tagging, added "expr")

variables

* moved typesinto attribute values

» variable declaration (changed. arrays became listsin expression. typeisin attribute)
string

* added gtring expressons

e isnull (new)

list

* addedligt expressions

(get | script | #PCDATA)*

e changed to (getlexpr#PCDATA)*

Defined scopes more carefully

argument declarations (changed. moved type to attribute)
assign (essentially unchanged. variable became "name”)
constant (changed. added "get" ability and "type" in attribute)
expression (changed. abbreviated to expr. string and list operations added via entity)
fold (new)

funcdecl (changed. "type" moved to attribute list)

gettype (new. returns "type")

not equal (changed. locked down to two (2) "expr")

return (changed. attribute list added)

» Added type attribute to <return >; the type tells which construct is ending, be it afunction, script, pane,

infoContainer, chain, or mid.

MID-2 (3/96)

MID-2 (3/96)

script (changed. attribute list added)

External Processes

» graphic (changed to external process)

» icon (changed. behaves now like graphic)

» xeno func (deleted. became a call to a function declared by a "xenodec!")

» xenofunc (removed <xenofunc > asa call to a xenodecl. <function > may be used to call both funcdecls and
xenodecls.

HyTime Location & Linking
removed locContainer
location container (deleted. became "pool™)

HyTime & SGML Management
security
e added security as HyTime activity to the mid and pane

Support
* invented support keywords

Structural changes:

* Rearranged grouping of elements

e Sat SGML NAMECASE GENERAL NO

» Enforced mixedCapitals

» Defined parameter entities %l ocs, %oprimitives, %functionTypes, %ospecial TextTypes
* Attribute "type % functiontypes,..." replaced " type" eement

» Element “ special Text” with associated attribute “ special TextTypes’ replaceselement “ emphasis’ asamore
general case

documentation
* cleaned and honed documentation
* regularized expression of comments

e theMID DTD stands more on itsown
mid e ement

e collapsed various bucketsinto single pool

* hasreturntype

45

MID-2 (3/96)

Appendices

A. Processable MID DTD

<ISGML “ISO8879:1986"

CHARSET BASESET “ISO 646-1983//CHARSET International
Reference Version

(IRV)//ESC 2/5 4/0” --2/5 was 2/8--
DESCSET 0 9 UNUSED

9 2 9

11 2 UNUSED

13 1 13

14 18 UNUSED

32 95 32

127 1 UNUSED
BASESET “ISO Registration Number 100/CHARSET ECMA-94

Right Part of Latin Alphabet Nr. 1/ESC 2/13 4/1”

DESCSET 128 32 UNUSED
160 5 32
165 1 UNUSED
166 8 38
254 1 127
255 1 UNUSED

CAPACITY SGMLREF
TOTALCAP 175000
GRPCAP 70000
ATTCAP 50000

SCOPE DOCUMENT

SYNTAX

SHUNCHAR CONTROLS01234567891011121314151617

18 19 20 21 22 23 24 25 26 27 28 29 30 31 127 255

BASESET “ISO 646-1983//CHARSET International Reference Version
(IRV)/[ESC 2/5 4/0"

DESCSET 0 128 0
FUNCTION RE 13

RS 10

SPACE 32

TAB SEPCHAR 9
NAMING LCNMSTRT *

UCNMSTRT

LCNMCHAR *-."

UCNMCHAR *“-

NAMECASE GENERAL YES

ENTITY NO
DELIM GENERAL SGMLREF

SHORTREF NONE --short references disabled for time being--

NAMES SGMLREF

A-1

QUANTITY SGMLREF LITLEN 2048

NAMELEN 32

ATTCNT 80

GRPCNT 80 --used default value of 32 before--
FEATURES
MINIMIZE DATATAG NO OMITTAG YES RANK NO

SHORTTAG YES -- SHORTTAG NO no CALS SGML Declaration.
Considered desirable

to minimize MID instances. --
LINK SIMPLE NO IMPLICIT NO EXPLICIT NO
OTHER CONCUR NO SUBDOC NO FORMAL YES
APPINFO “HyTime”
>
<?HyTime VERSION “ISO/IEC 10744:1992"” HYQCNT=32>
<?HyTime MODULE base exidrefs>
<?HyTime MODULE measure>
<?HyTime MODULE locs anydtd coordloc HyQ multloc query relloc>
<?HyTime MODULE links manyanch>

<l--
MID: Metafile for Interactive Documents

Document Type Definition

This document type definition shall be identified by the following
declaration:

PUBLIC "-//MID//DTD MID Document Type Definition 19951201//EN"

>

<!-- NOTATIONS -->
<INOTATION SGML PUBLIC

"+//1ISO 8879:1986//NOTATION Standard Generalized Markup
Language//EN" >

<INOTATION HyTime PUBLIC

"+//ISO/IEC 10744:1992//NOTATION Hypermedia/Time-based
Structuring Language//EN" >

<INOTATION HyQ PUBLIC
"+/[ISO/IEC 10744:1992//NOTATION HyTime Query Notation//EN" >

<INOTATION virspace PUBLIC
"+/[ISO/IEC 10744:1992//NOTATION Virtual Measurement Unit/EN" >

<!-- ENTITIES -->
<!I-- locs

These are the HyTime Location addresses used by the MID. -->

<IENTITY % locs "nameloc | treeloc | dataloc | notloc | proploc | relloc |
bibloc"

>

<!-- primitives, functionType, variableType, constantType

The MID script primitives are listed in the entities below. The
application may choose to override these declarations to extend or
constrain the MID definition. An atom is string or any one of the

primitives. -->

<IENTITY % primitives "boolean | int32 | uint32 | int64 | uint64 | float32 |
float64 | sgmichar" >

<IENTITY % functionTypes "%primitives | string | atom | list | any | void"
>

<IENTITY % variableTypes "%primitives | string | atom | list | any" >

<IENTITY % constantTypes "%primitives | string" >

<!-- MID -->

<!-- mid

A-2

MID-2 (3/96)

The mid element is the document element for a mid application. The
vardecls, funcdecls, and xenodecls in its immediate content are global
declarations to the MID application. The MID instance is processed by
first processing the global declarations and then the master script.
The MID returns the results of evaluating its master script. The type
of the resulting data is given as the value of the functionType
attribute. This specification is redundant and is made solely for
convenience. Itis a reportable MID error (RME) if the type of the
return value of the master script does not match the return value of

the MID.

Date and version hold human-readable strings for specifying the date

and version of this document.

The docmdu attribute specifies the measurement domains of the
document's finite coordinate spaces (fcs) and the least common unit

for computing dimensions in each fcs.

The security attribute identifies the security designation for this

MID document. Security is implemented as a HyTime activity policy.

The following are support options for the support statement. The

names may be listed in any order.

conditionalPane

This document may contain conditional panes.

conditionalWidget

This document may contain conditional widgets.

fcsTable

This document may contain MID fcs tables.

list
If list is specified, this document may use the list data structure
and the list expressions. If list is not specified, list must be

deleted from the functionTypes and variableTypes parameter entities.

MIL-M-87268
This document is intended to be used in connection with software

whose user interface strictly conforms to MIL-M-87268.
nonMID

This document may contain addresses of locations in external

SGML/HyTime documents which are not MID documents.

query

This document may contain queries which address locations in

external SGML/HyTime documents which are not MID documents. If
query

support is specified, nonMID support is implied.

relationship

This document may contain MID relationship forms.

spawn

If spawn is specified, this document may contain spawn elements.

string

If string is specified, this document may use the string data
structure and the string expressions. If string is not specified,
string must be deleted from the functionTypes and variableTypes

parameter entities.

xeno
If xeno is specified, this mid document may use the xenodecl and
xeno elements. All data content notations must be declared using

notation declarations in the DTD.

<IELEMENT mid - O ((vardecl | funcdecl | xenodecl)*, script, pool?) >
<IATTLIST mid

HyTime NAME #FIXED HyDoc

id ID #IMPLIED

functionType (%functionTypes;) atom

date CDATA #IMPLIED

version CDATA #IMPLIED

docmdu CDATA #FIXED "virspace 1 1"

HyNames CDATA "activity security”

security IDREFS #IMPLIED

support NAMES "conditionalPane conditionalWidget fcsTable list

MIL-M-87268 nonMID query relationship spawn string xeno"

<I-- CONTAINERS -->
<!-- infoContainer

When an infoContainer is accessed, its declarations are processed.
The menubar is built from the list of menubars given in the attribute
value, then the script (which may contain adjustments to the menubar
in setState commands) is executed. After this, the title, alert, and
clientArea are processed in the order they appear. The functionType

attribute specifies the return type of this construct.-->

A-3

MID-2 (3/96)

<IELEMENT infoContainer - O ((vardecl | funcdecl | xenodecl)*, script?,
title?,

alert*, clientArea, pool?) >

<IATTLIST infoContainer
id ID #IMPLIED
menubar IDREFS #IMPLIED
functionType (%functionTypes;) atom

>

<!-- chain
Access to infoContainers within a chain is restricted to
infoContainers within that chain. When a chain is accessed, its first

contained infoContainer is processed. -->

<IELEMENT chain - O (infoContainer)* >
<IATTLIST chain
id ID #IMPLIED

>

<!-- tableTypes
The table entity is used to allow the application to substitute any

table type into the pane declaration.-->

<IENTITY % tableTypes "fcsTable" >

<I-- pane

A pane is a single user interface presentation, which is rendered
when it is encountered. A pane encapsulates a scope. A get within a
pane causes the target to be rendered on this pane. Scripts within
panes are run when the pane is rendered. The return value of the script
is the return value of the pane. It is a RME if the type of the pane
and the containing script are not the same. A pane is modeless when
contained in a client area or when called from spawn. A pane is modal

when called from gosub.

The security attribute identifies the security designation for this

pane. Security is implemented as a HyTime activity policy.

<IELEMENT pane - O ((vardecl | funcdecl | xenodecl)*, title?,

(text | %tableTypes; | graphic | audio | video | animation | widgetGroup |
get |

script)) >
<IATTLIST pane
id ID #IMPLIED

functionType (%functionTypes;) atom
HyNames CDATA "activity security”
security IDREFS #IMPLIED

>

<l-- alert

An alert represents a modal popup window with the contained
information. The contents of the alert are evaluated and rendered in
the order they are encountered. The alert is popped down when a
return alert statement is encountered in the button script. The type

attribute indicates the semantic of the alert. -->

<IELEMENT alert - O (title?, icon*, text, button) >
<IATTLIST alert

id ID #IMPLIED

type (warning | caution | note) note

>

<!-- pool

Elements in the pool are not rendered until they are requested by
identifier reference. The scope of all resolution of variables, etc.,
is always specified lexically, i.e., variables referenced in the pool
are valid or invalid with respect to the containing scope (mid or
infoContainer), not with respect to the caller's state. Among other
things, the pool may contain elements of the following types: HyTime
location address, HyTime hyperlink, chain, infoContainer, menubar,

pane, alert. -->

<!ELEMENT pool - O ANY >

<!-- messageArea
The contents will be evaluated and concatenated in the order in
which they appear and the results will be rendered by the application

as a "message area" message. -->

<IELEMENT messageArea - O (get | expr | #PCDATA)* >

<l-- clientArea
A client area is the container for panes, pane groups, and
conditional panes. The panes are rendered in the order they are

encountered.

NOTE: In an 87268 implementation, the last child of a client area must
be a widget group pane. This pane is the footer bar. The members of
the widget group may only be buttons. The label for the widget group

will not be rendered. -->

A-4

MID-2 (3/96)

<IELEMENT clientArea - O (pane | paneGroup | conditionalPane |
alert)* >

<!-- TRANSITIONS & LINKS -->
<!-- gosub, goto, spawn
Expresses a HyTime hyperlinks with specific MID script traversal

semantics.

Gosub indicates that the state of the current infoContainer be saved
and the target object rendered. Gosub targets may be of the following
types: infoContainer, chain, pane, conditionalPane, alert, mid. Gosub
is forbidden to an infoContainer that is nested in another chain.
Gosub is forbidden to a pane or conditionalPane that is nested in

another infoContainer's client area or pane group.

Goto indicates that the current infoContainer be abandoned immediately
and the new infoContainer launched. Goto targets may be of the
following types: chain, infoContainer, mid. Goto is forbidden to an
infoContainer nested in another chain. Return values from objects
which are targets of goto are lost, because there is nothing waiting

on the returned value. A goto which targets this MID document is

equivalent to a restart of this MID document.

Spawn indicates that control flow splits. Spawned targets may be of
the following types: infoContainer, chain, pane, conditionalPane,
alert, mid. Both parent and child compete for focus in the
application display space. Spawn is forbidden to an infoContainer
nested in another chain. Spawn is forbidden to a pane nested in a
client area. Return values from spawned objects are lost, because
there is nothing waiting on the returned value. When a spawn is
encountered, control stops in the calling script, the target is flowed
until it reaches an idle state, then the caller continues until it

reaches an idle state. -->

<IELEMENT (gosub | goto | spawn) - O (%locs;)*>
<IATTLIST (gosub | goto | spawn)

HyTime NAME ilink

HyNames CDATA "linkends target”

anchrole CDATA "me target"

target IDREF #REQUIRED

>
<l-- get
Get expresses that the information at the source be collected,

concatenated, and rendered at the point of the get.

If space is specified, the members of a target aggregate will be

delimited by a single space before the data is concatenated. If
normalize is specified, leading and trailing white space is removed,

and multiple contiguous spaces are converted into a single space. -->

<IELEMENT get - O (%locs;)*>
<IATTLIST get
HyTime NAME ilink
anchrole CDATA "me source #AGG"
HyNames CDATA "linkends source"
source IDREF #REQUIRED
space (space | noSpace) space
normalize (normalize | noNormalize) noNormalize

>

<!-- relationship

The relationship form conforms to the architecture for a HyTime
ilink. It expresses an authored relationship between two identified
objects. The application must provide its own element and attribute
declarations for hyperlinking according to the HyTime standard. This
pseudo-declaration is provided as a model for the HyTime ilink. The
generic identifier of the relationship governs the relationship

semantic.

The traversal semantic of the relationship is governed by the
traversal attribute. If traversal is set to be undefined, traversal

decisions will be left up to the application.

Attributes may be added to change traversal from hotspot marking
(interrupt) to hotspot information by request only (polling). This

would prevent hotspot clutter in an on-line index, for example.

<IELEMENT relationship - O (title, %locs;*) >
<IATTLIST relationship

HyTime NAME ilink

id ID #IMPLIED

relationshipName #CDATA #FIXED

anchrole CDATA #FIXED "antecedent #AGG consequent #AGG"

linkends IDREFS #REQUIRED

extra NAMES #IMPLIED

intra NAMES #IMPLIED

endterms IDREFS #IMPLIED

aggtrav NAMES agg

MID NAME #FIXED relationship

privTrav NAMES #IMPLIED

traversal (gosub | spawn | goto | undefined) spawn
>

>

A-5

MID-2 (3/96)

<I-- CONTROLS -->
<!-- menu

This element declares a named and labeled menu of menus and menu
items. If disable is specified, the menu label will be visible but
the menu will be inaccessible ("grayed out"). The menu will be
rendered when its label is selected from a rendered parent menu or

menubar. -->

<IELEMENT menu - O (label, (menu | button | buttonGroup)*) >
<IATTLIST menu

id ID #IMPLIED

enable (enable | disable) enable

>

<!I-- setState

This element indicates that the state of the target object should be
modified according to the attributes and content specified. Possible
targets: menubar, menu, button, buttonGroup. More complicated
substitutions should use the functionality provided by

conditionalWidget.

The toggle attribute tells whether the target should be toggled on,
toggled off, that the toggle should be removed, or that no change to

the toggle should take place.

The enable attribute tells whether the target should be enabled or

disabled ("grayed out") or that no change should be made.

The action attribute tells whether to modify the target, to remove the
target from its position, or to reset the target to its initial

settings.

The content attribute tells how to treat the content of the setState
element. The subelements may be inserted before the target, after the
target, or replace the target entirely. Replacing items on the menubar

with a buttonGroup is not allowed. -->

<IELEMENT setState - O (menu | button | buttonGroup)* >
<IATTLIST setState
target IDREFS #REQUIRED

toggle (toggleOn | toggleOff | removeToggle | noToggleChange)
noToggleChange

enable (enable | disable | noEnableChange) noEnableChange
action (modify | remove | reset) modify
content (insertBefore | insertAfter | replace) replace

>

<!-- button

A button represents a user interface activation control. The script
is run when the button is activated. If specified, the name of the
button must be unique within a button group. If toggleOn is
specified, the button is rendered with a "toggled on" representation.
If toggleOff is specified, the button is rendered with a "toggled off"
representation. If disable is specified, the button will be visible

but it will be inaccessible ("grayed out"). -->

<IELEMENT button - O (label?, script) >
<IATTLIST button
id ID #IMPLIED
name NAME #IMPLIED
toggle (toggleOn | toggleOff | noToggle) noToggle
enable (enable | disable) enable

>

<!I--fillin

Afillin represents a fill-in-the-blank widget. The initial value
of the variable provides the initial text. When noEcho is
specified, the user's input is not echoed to the display (e.g., for

entering passwords). -->

<IELEMENT fillin - O (label, variable) >
<IATTLIST fillin

id ID #IMPLIED

echo (echo | noEcho) echo

>

<!-- dynamicList

A dynamicList represents a widget which allows a user to assign a
value to a variable. When encountered, the label is rendered to name
the widget. The expr is evaluated; the results become the option
list, and the option list is rendered. If notRestricted is specified,
the user may enter a value which is not on the option list. The

script gets run when the user makes a selection. -->

<IELEMENT dynamicList - O (variable, label?, expr, script?) >
<IATTLIST dynamicList

type (pickOne | pickMany) pickOne

restricted (restricted | notRestricted) notRestricted

>

<!-- label
A label is made up of any combination of retrieved text, the results
of evaluation of expressions, parsed character data, and icons. Itis

rendered when its container is rendered, in such a way as to preserve

A-6

MID-2 (3/96)

the semantic of grouping.-->

<IELEMENT label - O (get | expr | #PCDATA | icon)* >

<!-- PRIMITIVES & DOCUMENT STRUCTURE -->
<!I-- text

Groups text items. -->

<IELEMENT text - O (get | expr | #PCDATA | specialText | title |
paragraph |

orderedList | unorderedList)* >
<IATTLIST text
id ID #IMPLIED

>

<!-- specialTextTypes

Lists the types of text which are recognized as special. -->

<IENTITY % specialTextTypes

"visualPunch | foreignWord | semanticStress | newTerm |
bibliographicReference |

wordAsWord | wordAsDefinition | informalName | properObject |
mathExpression |

acronymExpansion | anchor | none" >

<!-- specialText
Indicates that the contained text is qualified by some semantic.

>

<IELEMENT specialText - O (get | expr | #PCDATA | specialText)* >
<IATTLIST specialText

id ID #IMPLIED

type (%specialTextTypes;) none

>

<l-- title

Title indicates the title of the object which contains it. It is
always to be rendered in such a way as to indicate that association.
The contents of the title element are evaluated and concatenated in

the order that they appear. -->

<IELEMENT title - O (get | expr | #PCDATA | specialText)* >

<!-- paragraph

Indicates the contained text is regarded and rendered as a

paragraph. -->

<IELEMENT paragraph - O (get | expr | #PCDATA | specialText)* >

<IATTLIST paragraph
id ID #IMPLIED

>

<l-- orderedList, unorderedList

These represent two types of list. An ordered list is typically
rendered with ascending identifying numbers, letters, etcetera. An
unordered list is typically rendered with bullets instead. Items in
either kind of list must be rendered in the order they appear

lexically. -->

<IELEMENT (orderedList | unorderedList) - O (title?, item+) >
<IATTLIST (orderedList | unorderedList)
id ID #IMPLIED

>

<!I-- item

Represents a list item. -->

<IELEMENT item - O (get | expr | #PCDATA | specialText | orderedList |

unorderedList)* >

<!-- EXTERNAL NOTATIONS -->
<!I-- icon, graphic, audio, video, animation

Access to external notations is made from these elements. -->

<IELEMENT (icon | graphic | audio | video | animation) - O (get | expr)*
>

<IATTLIST (icon | graphic | audio | video | animation)
id ID #IMPLIED

>

<!-- TABLE ELEMENT TYPES -->
<!-- tableTypes
The table entity is used to allow the application to substitute any

table type into the pane declaration.-->

<IENTITY % tableTypes "fcsTable" >

<l-- fcsTable

The fcsTable conforms to the HyTime finite coordinate space. It
expresses the abstract layout of a table without imposing assumptions
about how the tabular information will be rendered or used. To
implement fcs tables, applications must implement the following
architectural forms as required by the HyTime standard: fcs, evsched,
axis, event, extlist, measure, granule. The element declarations

below are provided as examples that conform to the needed HyTime

A-7

MID-2 (3/96)

architectural forms; they will be recognized by conforming HyTime

engines.

The fcsTable element contains event schedules. Its axisdefs attribute
lists the generic identifiers of the axes that make up the space. The

event elements contained in evscheds are scheduled on each of the
axes

of the fcs.

>

<IELEMENT fcsTable - O (evsched+) >
<IATTLIST fcsTable

HyTime NAME fcs

MID NAME fcsTable

id ID #IMPLIED

axisdefs CDATA #FIXED "xy"

<l--
Each axis is declared with a specific measurement domain (here,

virspace) and with a specified dimension.

Specific axes with specific axis dimensions must be declared for each
instantiation of table type. The fcsTable and the evsched refer to

the generic identifier of the desired axis.

NOTE: The axis dimensions "4" and "5" are example dimensions.
Particular tables may have any dimension required, theoretically up to
the the high quantum count value in HyTime.

>

<IELEMENT x - O EMPTY >
<IATTLIST x
HyTime NAME axis
MID NAME axis
axismeas CDATA #FIXED "virspace"
axisdim CDATA #FIXED "4"

>

<I[ELEMENT Yy - O EMPTY >
<IATTLIST y
HyTime NAME axis
MID NAME axis
axismeas CDATA #FIXED "virspace"
axisdim CDATA #FIXED "5"

>

MID-2 (3/96)

<l-- </measure>
The axisord attribute of the evsched element type dictates the order
in which dimension specifications are to be listed in the extent list -->
extlist of every event: first the spec for x, then the spec for y.

<IELEMENT measure - O (granule+) >

The #FIXED value of the basegran attribute of evsched establishes a <IATTLIST measure

base measurement unit for scheduling, in this case a "virtual space HyTime NAME measure

unit" (vsu). id ID #IMPLIED

> smu NAME #REQUIRED
>

<IELEMENT evsched - O (event)* >

<IATTLIST evsched <IELEMENT granule - O EMPTY>
HyTime NAME evsched <IATTLIST granule
MID NAME evsched HyTime NAME granule
id ID #IMPLIED gn CDATA #REQUIRED
axisord CDATA #FIXED "xy" gd CDATA #REQUIRED
basegran CDATA #FIXED "vsu" >

gran2hmu NUMBERS #FIXED "1 1"
overrun (error | wrap | trunc | ignore) error <!-- SEMANTIC GROUPING -->

> <!I-- paneGroup

Panes are grouped with some semantic intention of the author. They

are rendered with a title when encountered.-->

<I-- event, extlist <IELEMENT paneGroup - O (title?, (pane | paneGroup |
. . conditionalPane)*) >

The event and extlist elements are used by fcs but do not require
. . o <IATTLIST paneGroup
specific-case architectural form initialization. They may be used as
id ID #IMPLIED
they appear below. -->
>

<IELEMENT event - O (get | expr | #PCDATA)* >

<!-- widgetGroup
<IATTLIST event

A widgetGroup is an optionally labeled group of widgets. All of its
HyTime NAME event 9 p p y group g

. contents are rendered when encountered. The optional script is run
id ID #IMPLIED

after rendering the widget group, in order that setState may be called
exspec IDREFS #REQUIRED

to set the toggled wigets. -->
>

. <IELEMENT widgetGroup - O (label?,
<IELEMENT extlist - O (#PCDATA) >

(widgetGroup | conditionalWidget | buttonGroup | dynamicList | button |

<IATTLIST extlist fillin)*,
HyTime NAME extlist script?) >
id ID #IMPLIED
> <!-- buttonGroup

Represents a labeled group of buttons. The semantic of the grouping

<l-- measure, granule is expressed in the type attribute. An indication of pickOne means
The evsched element form requires a measure definition to occur only one button in the group may be selected. An indication of
somewhere in the document. The following one is an minimal example. pickMany means any number may be selected. If a default is specified,

the named buttons are preselected. If no default is specified and the

<measure smu=VIRSPACE> type is pickOne, the first button is preselected. -->

<granule gn=vsu gd="1 1 VIRSPACE">

A-8

<IELEMENT buttonGroup - O (label?, button*) >
<IATTLIST buttonGroup
id ID #IMPLIED
type (pickOne | pickMany | button) button
default NAMES #IMPLIED

>

<!-- menubar
This element declares a menu bar as a collection of menus and
buttons. The menubar will be rendered when an infoContainer that

points to it via its menubar attribute is rendered.-->

<IELEMENT menubar - O (menu | button)+ >
<IATTLIST menubar
id ID #IMPLIED

>

<I-- CONDITIONALS -->
<!-- conditionalPane

When a conditionalPane is encountered, the expression is evaluated.
Each successive expression is evaluated until one is equal to the
first. The pane group corresponding to the match is rendered. If no
expressions match, the final pane group, if present, is rendered as a
default. This construct is reevaluated when a reflow command is
issued for this element or an element in the proper ancestry of this

element.

NOTE: Conditional panes are intended to be used for alternate displays
of panes, as in alternate language presentation, rather than to
implement 269 preconditions; a conditional pane is not intended to be
the implementation of an if-step, nor is it intended to allow an

entire interactive electronic technical manual to be implemented with

a single infoContainer. -->

<IELEMENT conditionalPane - O (expr, (expr, paneGroup)*,
paneGroup?) >

<IATTLIST conditionalPane
id ID #IMPLIED

>

<!-- conditionalWidget

When a conditionalWidget is encountered, the first contained
expression is evaluated. Each successive contained expression is
evaluated, in order, until one is equal to the first. The widget
group corresponding to the match is rendered. If no expressions
match, the final contained widget group (if present) is rendered as a

default. -->

A-9

MID-2 (3/96)

<IELEMENT conditionalWidget - O (expr, (expr, widgetGroup)*,
widgetGroup?) >

<IATTLIST conditionalWidget
id ID #IMPLIED

>

<I-- reflow

When a reflow is encountered, the entire subtree of the target of
the reflow statement is rendered again. The target must be something
in the current infoContainer, and all current states within the scope
of the infoContainer will be respected. When no target is specified,
the entire current infoContainer will be rendered again. If multiple

targets are specified they are rendered again in the order given. -->

<!ELEMENT reflow - O EMPTY >
<IATTLIST reflow
target IDREFS #IMPLIED

>

<!-- SCRIPT ELEMENT TYPES -->
<!-- script

Scripts are evaluated depending on their context. First the
declarations are evaluated, then the statements. The return type for

the script is specified using the functionType attribute. -->

<IELEMENT script - O ((vardecl | funcdecl | xenodecl)*, statements) >
<IATTLIST script
id ID #IMPLIED

functionType (%functionTypes;) atom

>

<!-- Declarations

Declarations are processed and bound to the declared names in the
order the declarations are encountered. If a variable declaration
initializer contains a reference to another variable, the other
variable must have been declared and initialized prior to the

referring declaration. -->

<!-- vardecl

The vardecl element binds a name to a run-time storage location.
Variables must be declared before use. The expr initializes the
variable. The variableType attribute specifies the type of the
variable. Every variable type has a default initialization: zero for
integer and float types, false for boolean, and null for list and
string. The default sgmichar is zero. A local name which is the same

as a name declared higher in the scope stack renders the higher named

object unreferenceable (the local name is said to "shadow" the higher

one). -->

<IELEMENT vardecl - O (name, expr?) >
<IATTLIST vardecl
variableType (%variableTypes;) string

>

<!-- funcdecl

The funcdecl element binds a function name with argument list, local
state and statement list. Vardecl names shadow argdecl names. The
number of arguments, their types, and their order are always fixed.
The functionType attribute specifies the return type of the function.

>

<IELEMENT funcdecl - O (name, argdecl*, vardecl*, statements) >
<IATTLIST funcdecl
functionType (%functionTypes;) atom

>

<!-- argdecl
The argdecl element binds an argument name to a passed value.

Arguments to functions are passed by value. -->

<IELEMENT argdecl - O (name) >
<IATTLIST argdecl
variableType (%variableTypes;) string

>

<l-- name
The name of a function, variable, xenodecl, or scriptLabel is
created by evaluating the contained elements in the order they appear

and concatenating the results.

After the data is concatenated, leading and trailing whitespace
characters are ignored, and multiple whitespace characters are

replaced by a single space. SGML NAME characters are folded
according

to the NAMECASE GENERAL parameter of the governing SGML
declaration.

>

<IELEMENT name O O (get | expr | #PCDATA)* >

<!-- statements

Statements are evaluated as directed by the context, in the order

they appear.

A-10

MID-2 (3/96)

NOTE: Although the absence of this container would not create
ambiguities in the MID language (i.e., this container is redundant),

it is provided as a convenience to MID script interpreters. -->

<IELEMENT statements O O
(‘expr | if | loop | break | switch | jump | scriptLabel | goto | spawn

| return | reflow | messageArea | setState)* >

<!-- stringOperations
The operations specific to string manipulation are collected here.

>

<IENTITY % stringOperations "strlen | substr | strcat | fold | isstring"

>

<!-- listOperations
The operations specific to list manipulation are collected here.

>

<IENTITY % listOperations "list | cons | car | cdr | append | isnull | islist |
nth |

count" >

<l-- expr
The expr element is evaluated as one of its contained elements. A

copy of the result is returned.

@TBD: The table for interaction between arguments of the various
operators and the return types and exception generation of each has
been left to the implementor of the prototype. The semantics for implicit
casting have also been left to the implementor of the prototype.

NOTE: Although the absence of this container would not create
ambiguities in the MID language (i.e., this container is redundant),

itis provided as a convenience to MID script interpreters. -->

<IELEMENT expr - O (‘assign | variable | constant | function |
add | multiply | subtract | divide | modulus | eq | It| gt|le|ge|and | or |
ne | not | gettype |

%stringOperations; | %listOperations; | gosub) >
<l-- variable

The contents of the storage bound to the name are returned to the
caller. -->

<IELEMENT variable - O (name) >

<!-- assign

The expression is evaluated and the results are placed in the

variable storage bound to the name. -->

<IELEMENT assign - O (name, expr) >

<!-- function

The arguments are evaluated in the order in which they appear and

the results are passed as arguments to the named funcdecl or xenodecl.

>

<IELEMENT function - O (name, argument*) >

<l-- argument
The expression is evaluated as the argument passed to a

function. -->

<IELEMENT argument - O (expr) >

<!-- add, multiply, subtract, divide, modulus, eq, It, gt, le, ge,
and, or, ne, not
The expressions are evaluated and the operation is applied according

to the data type. -->

<IELEMENT (add | multiply) - O (expr+) >

<IELEMENT (subtract | divide | modulus) - O (expr, expr) >
<IELEMENT (eq|lt|gt|le|ge|and]|or) - O (expr)+>
<IELEMENT ne - O (expr, expr) >

<IELEMENT not - O (expr) >

<l-- constant
The contents are evaluated and a value of the given constant type is

constructed. The contantType attribute specifies the data type.

The regular expressions and semantics for the MID primitives are as
follows, with keywords and letters folding case by the rule of the

SGML namecase.

boolean

("true”|"false"|"1"|"0"|"yes"|"no")

"true", 1, and "yes" are equivalent; "false", 0, and "no" are

equivalent.

We declare the following as shorthand:
DIGIT = ("0"["1"|"2"|"3"|"4"|"5"|"6"|"7"]"8"|"9")
NZDIGIT = ("1"["2"["3"|"4"|"5"|"6"|"7"|"8"|"9")

A-11

MID-2 (3/96)

int32, int64
("+"]"-")?, NZDIGIT, DIGIT*

These constants are base 10 representation only. "+" indicates

positive; "-" indicates negative.

uint32, uint64
NZDIGIT, DIGIT*

These constants are base 10 representation only.

float32, float64
("+"]"-")?, DIGIT+, ".", DIGIT+, ("e", ("+"|"-")?, NZDIGIT, DIGIT*)?

The "e" means "times-ten-to-the". Digits are required on both sides
of the decimal point. The mantissa is represented in 16 bits for
float32, and 32 bits for float64. The remaining bits are reserved for

the exponent.

sgmichar

And any single valid sgml character

string

any valid string of sgml characters

NOTE: In string and sgmlchar, record start (RS) and record end (RE)

are ignored according to the rules in ISO 8879.

<IELEMENT constant - O (get | #PCDATA)* >

<IATTLIST constant

constantType (%constantTypes;) #REQUIRED

normalize (normalize | noNormalize) noNormalize

recordDelimiter (recordDelimiter | norecordDelimiter) recordDelimiter

>

<l-- if, else
If the expression evaluates to true, the statements in the
statements element are executed. Otherwise, the statements within the

else are evaluated. -->

<IELEMENT if - O (expr, statements, else?) >
<IELEMENT else - O (statements) >

<!-- loop

The expression is evaluated. If the expression is true, the

statements are executed. The expression is reevaluated and the

statements are reexecuted until the expression returns false. -->

<IELEMENT loop - O (expr, statements) >

<l-- continue, break

Continue causes execution to resume at the top of the nearest
enclosing loop, whereupon the loop's expr is reevaluated. As always,
if the expr evaluates to false, execution resumes at the statement
following the loop. Break causes execution to resume at the statement
following the nearest enclosing loop or switch. If there is no
lexically enclosing loop, continue is ignored. If there is no
lexically enclosing loop or switch, break is ignored. No stacks are
affected. Jumping to a point within a loop initiates looping
behavior. Jumping to a point within a switch causes the switch's expr
to be evaluated automatically prior to execution of any statements.

>

<IELEMENT (continue | break) - O EMPTY >

<l-- switch, case, default

The expression is evaluated. Each of the expressions of the cases
is evaluated in the order in which the cases appear until one matches
the switch expression. If a match is found, the statements under the
matched case are executed until a break is encountered. Control
continues to the statements under the next case if no break is
encountered; the interceding expr is not evaluated. If no case

expression is matched, the default statements are executed.-->

<IELEMENT switch - O (expr, case*, default?) >
<IELEMENT case - O (expr, statements?) >

<IELEMENT default - O (statements?) >
<!-- jump, scriptLabel

Control immediately jumps to the named script label. Certain
restrictions apply: script labels are scoped local to a given

script. -->

<IELEMENT jump - O (name) >
<IELEMENT scriptLabel - O (name) >

<I-- gettype

Returns the type of the expression. Return type: string. -->

<IELEMENT gettype - O (expr) >

<!-- STRING OPERATIONS -->

A-12

MID-2 (3/96)

<l-- strlen
Returns the length of the string. Return type: uint32. Returns

zero if expression is not a string. -->

<IELEMENT strlen - O (expr) >

<!-- substr

First expr: string. Second expr: start position. Third expr: run
length. This construct returns the substring of the string, given
start position and run length. Start position is counted from 1.
Unspecified run length or run length greater than the length of the
string indicates the rest of string. Returns null string if start

position exceeds string length. Return type: string. -->

<IELEMENT substr - O (expr, expr, expr?) >

<l-- strcat
Returns the concatenation of the strings. Expressions in this

element's immediate content which evaluate to non-strings are ignored.

If space is specified, a space character is inserted between
expressions. If normalize is specified, leading and trailing white
space is removed, and multiple contiguous spaces are converted into a

single space.

Return type: string. -->

<IELEMENT strcat - O (expr)+ >
<IATTLIST strcat
space (space | noSpace) noSpace
normalize (normalize | noNormalize) noNormalize

recordDelimiter (recordDelimiter | norecordDelimiter) recordDelimiter

<!I-- fold

Returns the folded version of the string. Converts string to
uppercase using SGML name case folding rules. The name attribute
tells whether the name characters are to be folded according the SGML
declaration rules for entity names or for general names. Return type:

string. -->

<IELEMENT fold - O (expr) >
<IATTLIST fold
name (general | entity) general
normalize (normalize | noNormalize) noNormalize

recordDelimiter (recordDelimiter | norecordDelimiter) recordDelimiter

<l--isnull
This function returns true if the expression is a null (empty)
string or a null list. It returns false otherwise. Return type:

boolean. -->

<IELEMENT isnull - O (expr) >

<!-- isstring
Returns whether the expression is a string. Return type: boolean.

>

<IELEMENT isstring - O (expr) >

<I-- LIST OPERATIONS -->
<l-- list

Each expression in the content of this element is evaluated and
becomes an top-level item on the returned list. If no expressions are
specified, this element returns a null list. A list in MID has the
same binary tree implementation as lists in Lisp or Prolog. Return

type: list. -->

<IELEMENT list - O (. expr)* >

<l-- cons
This function returns a list in which the result of evaluating the
first expression is prepended to the list found in the second

expression. The second expression must be a list. Return type: list.

NOTE: The names cons, car, and cdr, while perhaps non-intuitive in
English, is precisely meaningful in LISP or Prolog; they were chosen

deliberately to enhance interdisciplinary communications. -->

<IELEMENT cons - O (expr, expr) >

<I--car

This function returns the car of the list, i.e, the first item of a

cons pair. The expression must be a list. Return type: any. -->

<IELEMENT car - O (expr) >

<!I-- cdr

This function returns all but the first item in a list (the second

half of a cons pair). Return type: list. -->

A-13

MID-2 (3/96)

<IELEMENT cdr - O (expr) >

<!-- append
This function returns the results of appending a list to a list.

Return type: list. -->

<IELEMENT append - O (expr, expr) >

<I--islist
This function returns true if the expression is of type list.

Return type: boolean. -->

<IELEMENT islist - O (expr) >

<l-- nth
exprl: list. expr2: integer. Returns the nth item of the list,
counting from one, without recurring into nested lists. Returns the

null list if there is no such item. Return type: atom or list. -->

<IELEMENT nth - O (expr, expr) >

<l-- count
Returns the number of items in the given list, without recurring
into nested lists. Returns zero if expression is a list which has no

members. Return type: uint32. -->

<IELEMENT count - O (expr) >

<!-- EXTERNAL PROCESS -->
<!-- xenodecl

The xenodecl element binds a name and argument declarations to a
call to an external notation. The functionType attribute specifies

the return type of this construct.-->

<IELEMENT xenodecl - O (name, argdecl*, xeno) >
<IATTLIST xenodecl
functionType (%functionTypes;) atom

>

<l-- xeno

The xeno element represents a subclass of the HyTime notloc.
Argument names from the containing xenodecl indicate substitution into
the RCDATA of the xeno when the argument name is surrounded by the

string tokens specified in argBegin and argEnd.-->

<IELEMENT xeno - O RCDATA >
<IATTLIST xeno

HyTime NAME notloc

id ID #IMPLIED

gdomain IDREFS #IMPLIED

qgcontext IDREF #IMPLIED

ordering (ordered | noorder) noorder
set (set | notset) notset

aggloc (aggloc | agglink | nagg) nagg
argBegin CDATA "$("

argéEnd CDATA ")"

>

<!-- return

This element terminates processing of the nearest containing
construct specified by the construct attribute, and returns the value
resulting from evaluating the expression. If there is no expression,

the return value is the default initialization for the stated return

type. >

<IELEMENT return - O (expr?) >
<IATTLIST return

construct (mid | chain | infoContainer | pane | alert | script | function)
function

>

<I-- HYTIME -->
<!-- security

Security is an implementation of the HyTime activity form. The
security attribute tells what level of security. Elements mid and
pane may point to a security element, thereby indicating the security
level. The contained script (if any) will be run when the indicated

activity (in this case, access) occurs.-->

<IELEMENT security - O (script)? >
<IATTLIST security
id ID #IMPLIED
HyTime NAME activity
actypes NAMES access
level (unclassified | confidential | secret | topSecret) unclassified

>

<!I-- The following HyTime location types are instantiated directly
from the HyTime standard. -->
<IELEMENT nameloc - O (nmlist | HyQ)* >
<IATTLIST nameloc
HyTime NAME nameloc
id ID #REQUIRED

ordering (ordered | noorder) noorder

A-14

MID-2 (3/96)

set (set | notset) notset

aggloc (aggloc | agglink | nagg) nagg

>

<IELEMENT nmlist - O (#PCDATA) >

<IATTLIST nmlist
HyTime NAME nmlist
nametype (entity | element | unified) #REQUIRED
obnames (obnames | nobnames) #REQUIRED
docorsub ENTITY #IMPLIED
dtdorlpd NAMES #IMPLIED

>

<IELEMENT HyQ - O (#PCDATA) >
<IATTLIST HyQ
HyTime NAME nmquery
gdomain IDREFS #IMPLIED
qgcontext IDREF #IMPLIED
notation NAME #FIXED HyQ
delims CDATA #IMPLIED
fn NAME #IMPLIED
usefn NAME #CONREF
args IDREFS #IMPLIED
gpnpsh NAMES #IMPLIED
gltnimgi NAMES #IMPLIED

>

<IELEMENT treeloc - O (marklist*) >
<IATTLIST treeloc
HyTime NAME treeloc
id ID #REQUIRED
overrun (error | wrap | trunc | ignore) error
treecom (treecom | ntreecom) ntreecom
locsrc IDREFS #IMPLIED
ordering (ordered | noorder) noorder
set (set | notset) notset
aggloc (aggloc | agglink | nagg) nagg

>

<IELEMENT relloc - O (dimlist*) >
<IATTLIST relloc
HyTime NAME relloc
id ID #REQUIRED
root IDREFS #IMPLIED
relation (anc | esib | ysib | des | parent | children) parent
overrun (error | wrap | trunc | ignore) error

locsrc IDREFS #IMPLIED

ordering (ordered | noorder) noorder
set (set | notset) notset

aggloc (aggloc | agglink | nagg) nagg

>

<IELEMENT dataloc - O (dimlist*) >
<IATTLIST dataloc
HyTime NAME dataloc
id ID #REQUIRED
quantum (str | norm | word | name | sint | date | time | utc) str
catsrc (catsrc | nocatsrc) nocatsrc
catres (catres | nocatres) nocatres
overrun (error | wrap | trunc | ignore) error
locsrc IDREFS #IMPLIED
ordering (‘ordered | noorder) noorder
set (set | notset) notset
aggloc (aggloc | agglink | nagg) nagg

>

<IELEMENT marklist O O (marklist | #PCDATA)* >
<IATTLIST marklist
HyTime NAME marklist

>

<IELEMENT dimlist O O (dimlist | marklist | #PCDATA)* >
<IATTLIST dimlist
HyTime NAME dimlist

>

<IELEMENT proploc - O (gpn | #PCDATA) >
<IATTLIST proploc
HyTime NAME proploc
id ID #REQUIRED
joint (joint | several) several
apropsrc (apropsrc | solesrc) solesrc
notprop (error | empty | ignore) ignore
locsrc IDREFS #IMPLIED
ordering (ordered | noorder) noorder
set (set | notset) notset
aggloc (aggloc | agglink | nagg) nagg

>

<IELEMENT qgpn - O (pn, spec?)+ >
<IATTLIST gpn

HyTime NAME gpn

id ID #REQUIRED

>

A-15

MID-2 (3/96)

<IELEMENT pn - O RCDATA >
<IATTLIST pn
HyTime NAME pn

>

<IELEMENT spec - O ((gpn | gltn)+ | pval) >
<IATTLIST spec
HyTime NAME spec

>

<IELEMENT (gltn - O RCDATA>
<IATTLIST qltn
HyTime NAME gltn

>

<IELEMENT pval - O RCDATA >
<IATTLIST pval
HyTime NAME pval

>

<IELEMENT notloc - O ANY >
<IATTLIST notloc
HyTime NAME notloc
id ID #REQUIRED
gdomain IDREFS #IMPLIED
qgcontext IDREF #IMPLIED
fn NAME #IMPLIED
usefn NAME #CONREF
args CDATA #IMPLIED
ordering (ordered | noorder) noorder
set (set | notset) notset
aggloc (aggloc | agglink | nagg) nagg

>

<IELEMENT bibloc - O ANY >
<IATTLIST bibloc
HyTime NAME bibloc
id ID #REQUIRED
gdomain IDREFS #IMPLIED
qgcontext IDREF #IMPLIED
fn NAME #IMPLIED
usefn NAME #CONREF
args CDATA #IMPLIED

>

MID-2 (3/96)

B. Relationship example (for illustration only)

First consder the modification of < relationship> to look like:

<IELEMENT relationship - O(title,(%ocs;)*)>
<I ATTLI ST rel ati onship
HyTi me NAME ilink
M D NAME #FI XED r el ati onshi p
rel ati onshi pNanme #CDATA #FI XED
id I D #l MPLI ED
anchrol e CDATA #FI XED "ant ecedent #AGG consequent #AGG'
I i nkends | DREFS #REQUI RED
privTrav NAMES #| MPLI ED
extra NAMES #| MPLI ED
i ntra NAVES #l MPLI ED
endt erns | DREFS #| MPLI ED
aggtrav NAMES agg
traversal (gosub | spawn | goto | undefined) spawn
>

The relationshipName is a displayable string that indicates the purpose of each element that is derived
from the relationship form.

The privTrav contains none, one, or all of the anchrole names. Its purpose isto define a default
traversal from none, all, or each linkend to another linkend within the rel ationship.

Now here' s an example.We create a relationship element called 'equipment’ that will represent any
sngle equipment component of a subsystem. The ‘ subsystem’ containing the equipment will be a
second relationship. Each equipment - in thiscase a radio and afire extinguisher - has a common set
of contexts (that the author has defined) where references to equipment are found. 1n addition,
groups of equipment may be found in subsystems.

For example, the author plansto identify the* AN/ABC Radio Set’ equipment in the context of
descriptive text, photos, schematic diagrams, and a partslist. Similarly, he will identify ‘NoFire Mode
42" fire extinguisher as an equipment element in text, photo, schematic, and partslist. For each
equipment, there will also be alist of hotspots (in text and graphics) that refer to the same equipment.
There can be multiple schematics and hotspots, asindicated by the #AGG (which specifiesthat the
link isallowed to be aggregate, e.g., a nameloc with a namelist containing multiple IDREFS).

Here' swhat the DTD lookslike for the equipment relationship element:

<l ELEMENT equi prent - O (title, (%ocs;)*)>
<I ATTLI ST equi prment
HyTi me NAME ilink
M D NAME #FI XED r el ati onshi p
rel ati onshi pNanme #CDATA #FI XED " Conponent "
id |D # MPLI ED
anchrol e CDATA #FI XED "descri ptivel nfo
phot o
schemati cs #AGG
partLi st
hot spot s #AGG'

MID-2 (3/96)

I i nkends | DREFS #REQUI RED

privTrav NAMES #| MPLI ED

extra NAMES #ALL

intra NAVES #ALL

endt erns | DREFS #| MPLI ED

aggtrav NAMES agg

traversal (gosub | spawn | goto | undefined) spawn
>

There are hotspots, for both the fire extinguisher and theradio, in thetext of an alert. However, the
hotspot for the radio actually refersto the power switch of the radio. Therefore, we wish the traversal
from the power switch hotspot to take usto a particular location on the radio photograph, not just
the graphic pane containing the photo. Thisrequires usto got through a notation to bring the photo
objects from Microsoft SHG format into the MID name space. To make thisless obtuse, we create a
second relationship type called directRel that allows usto specify a preferred traversal from the
hotspot to the powerswitch object on the photo. Note that the equipment relationship can only

specify a privTrav from the set of hotspots to the photo, not from a specific hotspot to an object on
the photo. Applications must sort out the possible ambiguity of multiple privTravs on the same
anchor, but from different relationships, having conflicting traversal priorities.

<IELEMENT directRel - O (title,(%ocs;)*)>
<l ATTLI ST di rect Rel
HyTi me NAME ilink
M D NAME #FI XED r el ati onshi p
rel ati onshi pName #CDATA #FI XED "Di rect Link"
id |D # MPLI ED
anchrol e CDATA #FI XED "source desti nation”
l'i nkends | DREFS #l| MPLI ED
privTrav NAMES #| MPLI ED
extra NAMES “A E
intra NAMES “A E’
endt erns | DREFS #| MPLI ED
traversal (gosub | spawn | goto | undefined) spawn
>

Now, moving up alevel to the subsystem definition, the author creates a third relationship element
that specifiesthat a particular set of equipment (subsystem components) belongs to a subsystem. We
will define a specific subsystem for Emergency Management that will contain both the radio and the
fire extinguisher. Hereisthe DTD eement:

<I ELEMENT subsystem - O (title?, % ocs;*)>
<I ATTLI ST subsyst em

HyTi me NAME ilink

M D NAME #FI XED r el ati onshi p

rel ati onshi pNanme #CDATA #FI XED " Subsyst ent'

id I D #l MPLI ED

anchrol e CDATA #FI XED " components #AGG'

I i nkends | DREFS #l MPLI ED

privTrav NAMES #| MPLI ED

extra NAMES #ALL

intra NAVES #ALL

endt erns | DREFS #| MPLI ED

aggtrav NAMES agg

traversal (gosub | spawn | goto | undefined) spawn

MID-2 (3/96)

The‘schematics and * hotspots' linkends in the equipment el ement, and the * components’ linkend in
the subsystem element, actually comprisea nmlist of equipment elements.

Hereiswhat we have so far:

limk-to

descriptive Info

components

link-4o

equiprient

has-a

direct link-to

relation=ship

destination

Hence, the instance looks something like this:
<pool >
<l-- These are the relationships -->

<equi prent i d=anabc | i nkends="abcText abcPhoto abcWringDi agrans abcPart Li st
abcHot spot s" >
<title>AN ABC Radi o Set</title>
<I-- list of schematics #AGG -->
<nanel oc i d=abcWri ngDi agr ans>
<nnl i st namet ype=el enent obnanmes=nobnanes >
abcWring0lof 03 abcWring02of 03 abcWring03o0f03 </ nmist>
</ namnel oc>
<I-- list of hotspots #AGG -->
<nanel oc i d=abcHot spot s>
<nnl i st namet ype=el enent obnanmes=nobnanes >
abc001 abc002 abc003 abc004 </nmist>
</ namnel oc>
</ equi pnent >

<equi prent id=nofire |inkends="nofireText nofirePhoto nofireSchens nofirePartLi st
nof i r eHot spot s" >
<title>NoFire Mdel 42</title>
<nanel oc id=nofireSchens>
<nnl i st namet ype=el enent obnanmes=nobnanes >
nofireScheml nofireSchen2 </ nmist>
</ namnel oc>
<nanel oc i d=nofi r eHot spot s>
<nnl i st namet ype=el enent obnanmes=nobnanes >
nofire001 nofire002 nofire003 nofire004 </nmist>
</ namnel oc>
</ equi pnent >

<l-- ‘naked” pane in the pool -->
<pane id=nofireText Pane>

<text id=nofireText>

The NoFire Mddel 42 Fire Extinguisher puts out fires and spews chem cals like a
chanp.

</text>

B-3

MID-2 (3/96)

</ pane>

<subsyst em i d=enSubsyst em | i nkends="emNanes" traversal =gosub>
<title>Emergency Management</title>
<nanel oc i d=enmNanmes>
<nnl i st namet ype=el enent obnanmes=nobnanes >
anabc nofire </nmi st>
</ namnel oc>
</ subsyst en>

<l-- Here is the part that does the directRel fromthe specific hotword in the
alert to the power switch object in the photo, called ‘powerswitch -->
<l-- SHGis Mcrosoft file format that enmbeds named coordi nate zones in a Wndows

bitmap . BWP -->
<! NOTATI ON SHG PUBLI C
"-//1SBN 0-7923-9432-1:: Graphi c Notation//NOTATI ON
M crosoft Segnented Hypernedi a// EN'>

<! NOTATI ON SHGNAMES PUBLI C
“-//M Dcomm ttee// NOTATI ON
shgnanes// EN' >

<IENTI TY abcShgFi |l e SYSTEM "radi oabc. shg" NDATA SHG

<l-- Gve the entity an ID -->
<nanel oc i d=abcG aphi c>
<nnm i st nanetype=entity obnanes=nobnames>
abcShgFi | e</ nm i st ></ namel oc>

<l-- This pane is an anchor for equi pnment ‘anabc’ -->
<pane i d=abcPhot o>
<gr aphi c i d=r ender G aphi c>
<get target =abcG aphi c></ gr aphi c></ pane>

<not | oc i d=abcPower Swi t chLoc not at i on=" SHGNAMES” qdomai n=abcG aphi c>
power swi t ch</ not| oc>

<l-- Here is the relationship directRel defining i mediate traversal to the power
switch | ocation graphic, even though the Iinkend abc0O0Ol is also listed as a
i nkend of the equipnent relationship -->
<di r ect Rel
i d=abc00lpowerswi tch
i nkends="abc001 abcPower Swi t chLoc”
privTrav=destination
endt er ns="#NONE abcPower Swi t chLoc” >
<titl e>AN ABC Radi o Power Switch Location</title>
</ directRel >

</ pool >

<l-- W sonehow get to a repair procedure -->

<chai n i d=engi neRepai r >
<i nf oCont ai ner i d=engi neRepai r St ep006>

B-4

MID-2 (3/96)

<title>Renoving the Battery</title>
<cl i ent Area>
<al ert id=a004 type=warni ng>
<title>Spark Hazard
<t ext >When renoving the battery term nal connectors,
there is a chance that a spark will be generated.
Be sure you are famliar with the location of a trusty
<speci al Text id=nofire001 type=anchor>
NoFi re Mbdel 42 Fire Extingui sher</speci al Text >
and the power switch of the shipboard
<speci al Text i d=abc001 type=anchor>AN ABC Radi o Set </ speci al Text >.
</text>
</alert>
<pane>

</ i nf oCont ai ner >

The special Text element nof i r e001 isan anchor for one of the nof i r eHot spot s linksinthe
equi prent relationship nofire.

The special Text element abc001 isboth (1) an anchor for one of the abcHot spot s linksinthe
equi pment relationship anabc, and (2) an anchor for the sour ce linkend of the di r ect Rel
relationship abc001power swi t ch. Becausethe di rect Rel hasapri vTrav that applies (based on
the endt er ms) to traversal from the hotword to the graphic coordinate zone, thistraversal will take
precedence over those defined by the equipment relationship.

What the Browser (M IDReader) Application doeswith all this stuff.

A browser application could set the primary method for activating alink as aleft mouse button click.
Additional information can be gathered by clicking the right mouse button.

For the example above, a user might get the same action from left or right mouse-clicks on the
nof i re001 hotword - alist of possible traversals from the information in the table below.

relationshipName | contentsof the anchrole

from DTD relationship title

Conponent NoFi re Mbdel 42 descriptivelnfo
Conponent NoFi re Mbdel 42 phot o

Conponent NoFi re Mbdel 42 schemati cs
Conponent NoFi re Mbdel 42 partLi st
Conponent NoFi re Mbdel 42 hot spot s
Subsystem Enmer gency Managenent conmponent s

In the case of the abc001 hotword, the left mouse-click might launch a graphic pane containing the
AN/ABC Radio phot o, with the power swi t ch object highlighted. A right-click would produce alist
of possble traversals smilar to the one above:

relationshipName | contents of theinstance | anchrole
from DTD of relationship title

Conponent AN ABC Radi o Set descriptivelnfo
Conponent AN ABC Radi o Set phot o

Conponent AN ABC Radi o Set schemati cs
Conponent AN ABC Radi o Set partLi st
Conponent AN ABC Radi o Set hot spot s
Subsystem Enmer gency Managenent conmponent s

Di rect Link AN ABC Radi o Power destination

Swi tch Location

At thispoint, it isleft to the application to make a seamless connection between the

MID-2 (3/96)

abcPowerSwitchLoc (or the powerswitch object in the graphic through some other method than
notloc), and the graphic window that will display it (i.e., the application should launch its own
window given a named element in a known graphic entity).

MID-2 (3/96)

C. MID Background

C.1 Background

The purpose of a metafile for interactive documentsis to embed behavior in an Interactive Electronic Technical Manual
(IETM) document, and to improve portability and reuse of that document. The metafile enables|ETM documentsto
be transferred from dissimilar authoring systems for unambiguous presentation and interaction on dissmilar display
systems.

C.1.1 Interactive Electronic Technical M anual

AnIETM, asdefined in the DoD IETM Specifications, is a package of information required for the diagnosis and
maintenance of a weapons system, optimally arranged and formatted for interactive screen presentation to the end-
user. Itisa Technical Manual prepared (authored) by a contractor and delivered to the Government, or prepared by a
Government activity, in digital form on a suitable medium, by means of an automated authoring syssem. AnIETM is
designed for e ectronic screen display to an end user, and has the following three characterigtics:

1. Theinformation isdesigned and formatted for screen presentation to enhance comprehension.

2. Thedementsof technical data making upthe TM areinterrelated. A user's accessto required information is
possible by avariety of paths.

3. Thecomputer-controlled TM display device functionsinteractively (asaresult of user requests and information
input) to provide procedural guidance, navigational directions, and supplemental information.

IETMsallow a user to locate required information faster and more easily than is possible with a paper technical
manual. They are easer to comprehend, more specifically matched to the system configuration under diagnosis, and
areavailablein aform that requires much less physical storagethan paper. Powerful interactive troubleshooting
procedures, not possible with paper technical manuals, can be made available using the intelligent features of the IETM
display device.

C.1.2 Metafilefor Interactive Documents

MIL-M-87268 and MIL-D-87269 define the process for authoring and displaying IETMs. They implement an
underlying strategy that separatesthe IETM source data base from the e ectronic display of the formatted IETM. The
roles of these specifications are as follows:

* MIL-M-87268 defines how the IETM should ook and behave to the reader.
e MIL-D-87269 edtablishesthe IETM database forms, structure, and key controlling mechanisms.

This process has found favor in the IETM development community. Most DoD IETM applications separate the
presentation attributes from the IETM content. However, since the standardization focus has been on the database data
structures and not on the run-time version of the IETM, (the View Package), each software vendor has developed a
proprietary format for capturing and moving the IETM to the Presentation System. In attempting to maintain a flexible
approach to the definition of the IETM data base, the specifications nearly guarantee non-portability across different
vendor products.

The current specifications define the data format and contents for the IETM database, and define the targeted "look and
fed" for the Presentation System. What has not been defined is how the ported IETM looks, i.e., what the Presentation
System reads asthe IETM.

To completely specify the electronic pathway for the process of preparing and using IETMSs, there must also be an
unambiguous definition of the "portable [IETM" -- the data that is produced by an Authoring System from the source
data and read by the Presentation System for display. IETM Presentation Systems must be able to take this "neutral
data from varying authoring systemsand structureit for display on dissmilar Presentation Systemswith a minimum
amount of human intervention. Thisisthe placefor the MID.

C1

MID-2 (3/96)

Authoring Presentation Authoring Transport Presentation
AS1 PS1 AS1 P51
AS2 PS2 AS? \\\ = PS2

MID
AS3 PS3 AS3) [~ PS3
AS4 P54 AS4 PS4

Current Systems

MID Interchange

Figure C-1. Current and FuturelETM Systems

Asshown in Figure C-1, an Authoring System currently must generate a separate version of an IETM for each targeted
Presentation System. It is obvious that a common interchange structure simplifies both the Authoring Systems and the

Presentation Systems.

The gtructure for the ported IETM is called the Metafile for Interactive Documents (MID). The MID providestarget
gructures for the authoring systems to write to, and for the Presentation Systemsto read from. It isan intermediate
gructure that, once specified, completesthe IETM process, as shown in the second part of Figure C-1 and in Figure C-

IETM
Data Base
(Content)

Presentation
Specifics

Authoring Transport

Translate or
Compile

Run Time
Format

Interpret

Target
System

Presentation

Figure C-2. ThelETM Process

C-2

MID-2 (3/96)

The Source System exports a MID instance which istransferred to the Trandation, Compilation or Interpretation
software in the Presentation system. The output from the Compilation or Trand ation software may be encoded in a
Run-Time structure that isread by the Target System and presented on the Device. Otherwise, a Target system may
interpret and present the MID instance directly.

C.1.3 Goalsand Objectives

The objective of thiseffort isto develop for the U.S. Navy, arigid and precise data format which contains or references
all the content from an |ETM data base devel oped in accordance with MIL-D-87269 or other specified definitions, but
structured to contain all the sequencing information necessary to unambiguoudy specify the behavior of that
information when presented. Use of the MID will ensure interoperability between two or more independently
developed MID instances which refer to information in the other using an external reference format specifed in this
document and based on the international standard for location and addressing in hypermedia, 1SO 10744 - HyTime.
Thiswill result in an unambiguous, complete, precise and consistent presentation of the [ETM information across
dissmilar authoring tools and Presentation Systems.

C.2 MID REQUIREMENTS

Thefirst step in the MID development was to establish the following requirements for the MID specification:

1. A MID can provide a portable container of data from the document database (e.g., MIL-D-87269) suitable for the
Presentation System (e.g., MIL-M-87268).

2. A MID must enable an implementor to create a very smple, yet efficient presentation of IETM information on any
ddivery devicethat is capable of the most common graphical user interface interaction and display operations.

A MID can be disconnected from the document database without losing essential content.

A MID must be readable and displayable in many common hardware/software environments.
A MID does not need to be editable in its defined format.

A MID must be based on accepted international standards (e.g., SGML, HyTime).

A MID must beimplementable.

A MID must be based on current technol ogy.

© ®© N o 0O &~ ©®

A MID istargeted to multimedia presentation of complex information.

10. A MID istargeted to asingle and deliberately smple presentation. Different MID instances may be developed for
different MIL-D-87269 content layers (each utilizing standard MID element types) or for information that is
congtrained by non-MIL-D-87269 databases and data in non-SGML notations.

11. A MID separatesthose attributes of GUI design that are typically specific and proprietary to the vendors from those
that are smilar across GUIs.

12. A MID must be extensible (e.g., include a process (an "escape” mechanism) to accommodate new component
types).
13. A MID isindependent of specific authoring and Presentation Systems.

14. A MID isunambiguous,; it must provide sufficiently explicit definition of data types and execution semantics so as
to enable unambiguous IETM presentations on differing target display systems.

15. While sourcefiles must be transportable to MID files, thereis no requirement that MID files must be transportable
back to the original source.

16. The potential functionality of the MID must encompass all functionality defined in MIL-D-87269 and MIL-M-
87268.

C-3

MID-2 (3/96)

C.3 THE MID ARCHITECTURE

Therole of the MID isto provide alanguage for authoring and transporting "intelligent” documents. The MID
architecture enables an author to determine where and how much that "intelligence” is used to direct a user in locating
and interacting with the information. While the presentation format and behaviors of the "intelligent” document are
standardized by aMID, the MID isfree of complex content structures. All information presentedinaMID is
represented by a small set of content primitives. This enablesthe MID to be used for many hypermedia applications.

C.3.1 Overview

The MID provides a modular approach to authoring and maintaining IETMs. A MID standardizes the presentation of
information and the behavior of that presentation across platforms. Thisis achieved through a standard set of user
interface objects combined with an internal scripting language that controls the interaction of these objects with each
other and the user as the objects access databases and display information on a Presentation System.

Cross-platform interoperability is achieved through the use of SGML/HyTime. The MID isan application of SGML
(1SO 8879) and HyTime (1SO 10744). SGML standardizes the syntax of the Document Type Definition for the MID
language. HyTime provides standard models for location and addressing element typesused inthe MID DTD. This
document assumes that the reader isfamiliar with the concepts and requirements of SGML.

vardec| ~

funcdec| ~

wenodec| ~

Figure C-3. MI1D Document Element Type

C.3.1.1 Using MID Scripts

A Presentation System startsa MID interactive session based on the contents of the MID Master Script in the document
instance. Asthe Master Script assumes control of the session, any < infoContainer> automatically returnsto the
Master Script if no other link isprovided inthe< infoContainer> and executes the next statement in the Master Script.
Figure C-4 illugtrates the components of a< script> e ement type.

wenodec]
statements

Figure C-4. MID Script Element Type

The example script below containsa < gosub> link which is processed. Theresult of thefirst < gosub> setsa"choice"
variable that was declared asan application global variable. Next, a switch statement is executed that contains two
<case> statements which are evaluated to determine which of two < goto> linksaretraversed. Upon returning to the

C4

MID-2 (3/96)

Master Script, another < gosub> isexecuted. All other processing is determined by the ingtructions encapsulated in
each <infoContainer>.

<script><dstatements>
<gosub target=i1>
<switch><express on><variable><name>choice
<case><express on><constant>House
<gtatements><goto target=i2></gatements>
</case>
<case><express on><constant>Automobile
<gtatements><goto target=i3></datements>
</case>
</switch>
<gosub target=i4>

</script>

The complexity of aMID Master Script depends on the overall complexity of the set of MID document entities, the
relationships among them, and the mission of the [IETM. MID allowsfor flexible approachesto encoding an IETM as
many different sources can be used which have different requirements for the levels of directing the navigation of their
content. For example, atraining script may congtrain the user of the IETM to view information in a specific order;
whereas, a technical manual may allow browsing in parts of the IETM at will.

Another example involves a document containing several traditional volumes of information. A MID can control
access to multiple subsets of the volumes by a master index which enables a user to determine which volume has the
information required. Theinitial Master MID could be a very smple script that functions as an Index of VVolumes with
hyperlinked content tables; or, it could be a very complex script that uses interactive dialogsto determine what
information is needed, locates that information and presentsit. How the author distributes the "intelligent” aspects of a
document isa matter of style, efficiency of processing and the phase of document creation.

C.3.1.2 Using Application Global Declarations

Declarationsin MID are scoped by the major element within which they are declared. Application globals, however,
declare the global functions and variables that are available to any function that requires them during execution of a
MID script. Figure C-5 shows the types of application globals:

wardec| ~

funcdec| ~

{xenodec! ~

Figure C-5. Applications Globals

C-5

MID-2 (3/96)

The variable declaration, <vardecl> declares a <type> for the variable. The <type>isadring. Elementsfor MID
function declarations (funcdecl), and declarations for non-MID functions (xenodecl) are also included in the
application globals. Note: The current revisionsto the MID has changed and eliminated the use of “ application
globals’ as mentioned in this section.

C.3.1.3 Using Information Containers

For the MID user, the Information Container isthelocus of interaction. An Information Container has user interface
objects and content that are presented to the user and managed by the processing of infoContainers.

funcdecl ~
xenodec! ~
I infoContainer ~ L title |
_-

Figure C-6. Information Container Element Type

Although it is convenient to divide the information by screens, the MID author should notethat one< infoContainer>
does not always equate to one screen. For example, an alert may be displayed prior to imaging the panesin a client
area. All of theprocessing isin one< infoContainer>, although to the human observer, they might appear to be
separate screens. For thisreason it ismore useful to think of an < infoContainer> as encapsulating a state space or unit
of process although it is more natural to consider it a unit of presentation.

C.3.1.4 Using Pools

Pool s enabl e the author to reuse common dialogsand alerts. From within a script, the author can use an dement in the
pool by linking to it using a< get>, then return to the place in the script fromwhichthe pool element was called.

A common application of a< pool> isto hold all of the Warnings, Cautions and Notes that are reused extensively
throughout an IETM.

C.3.1.5 Using Queriesto Access Document Databases

Inthe MID DTD, thefollowing construct is often found in the content model of element types.
get | #PCDATA | script

The capability to determine the target of alink based on the evaluation of a script isreferred to as "dynamic
hyperlinking." The SGML OR group shown above provides the basi ¢ structure which defines dynamic hyperlinking in
aMID. Dynamic hyperlinking isthe essence of advanced IETM capability. The element types are:

* get - alink to alocation eement found in a <locContainer>, <poolContainer> or directly toan< infoContainer>
inthe MID document instance. Note: In the current version of the MID, locContainer and poolContainer
functions have been incorporated in the pool element.

o #PCDATA - directly displayable content.

e script - A MID seript that returns a node of information based on the evaluation of conditions defined within the
script

C-6

MID-2 (3/96)

Element typesthat have this content model can be linked to external databases through location elements or to internal
containers. When the"get” link pointsto alocation model in a HyTime location address, this method of indirect
linking isreferred to asa "location ladder”.

When information from an external sourceiscopied into a MID document instance, thisiscalled a"hard MID". A
MID that accesses an external document database through the use of HyTime queries, called HyQs or other HyTime
location element typesisreferred to asa "soft" MID. The following are some reasons for creating "soft" and "hard"
MIDs

e A MID document instance is delivered without the supporting database. Thisisa"hard" MID inwhich all of the
location elements are resolved and the content that they locate is copied directly into the MID document instance.
This could be done because the target Presentation System cannot interpret and execute queries.

* A MID document is created without a supporting database. In this"hard" MID, thereis no requirement for the
external database; so, the author createsinformation directly inthe MID form. Such information includes general
maintenance procedures that are reused across systems without change.

e A MID document instance is delivered with the supporting database. This"soft" MID might be preferable because
the database contains information not duplicated or referenced by the [ETM that must be preserved without
alteration.

* A"soft" MID document instance is maintained as the source database is undergoing changes that must be reflected
in the contents of the MID. Thiswould betypical of production environmentsthat create [IETMsfor delivery, eg.,
integrated logistics support groups. For example, the MIL-D-87269 database contains technical information about
sysemswith long life cycles. The frequency for updating information in the database israpid in early stages of
system development. Soft MIDs used for the early stages of development allow an author to use the MID
Presentation System as an integrating tool which is dowly hardened as design information is configured.

Note that the degree of hardening can vary among and within M1D document instances. Any MID can contain a
mixture of "soft" and "hard" addresses. How this mix is defined depends on the mission of the MID within the
contractual deliverables of a weapons system.

C.3.1.6 Using Location Models

Below isan example of "soft" linking. Intheexample,a HyQ isshown along with a"hard" link for comparison.
<nameloc id="i24761144.name">
<HyQ gqdomain="i24761144">Proploc(DOMROOT ATTVAL[name] EMPTY)
<nameloc id="i24761144">
<nmlist docorsub="house">i24761144
<tredoc id="i236438177.fc" locsrc="i236438177"> 11
<nmlist docorsub="house">i236438177

Threetypes of "soft" linksare illustrated:

a. Named Location with Query - upon access, the HyQ query is evaluated and the string inside the attribute value
"name" isreturned. The query domain (gdomain) value (i24761144) is used to determine the target of the query
operation (i.e., the element or entity where the value islocated).

b. Named Location with Name List - upon access, this opens the document or subdocument pointed to in the location
of adocument referenced by the "house” entity. The ID of the element to be located in the "house" document isthe
content of the element, 124761144.

c. TreelLocationwith NameList - upon access, this also opens the "house" document and |ocates the element with
the ID value "i236438177". Upon locating the el ement, the markers (1 1) are used to count elements by their

C-7

MID-2 (3/96)

position in the element hierarchy until the desired element islocated. This method is used to locate information in
anode not identified by an ID or other named value.

Other types of HyTime location models are also supported by the MID.

Within the Master Script or insidean < infoContainer>, an element like the following is used to access a location
element:

<infoContainer id=welcome>

<title><get target=i24761144.name></title>

When encountered in the < infoContainer>, the <get> accesses the < nameloc> whose ID matchesthe valuein the
<get> target attribute, (target=124761144.name). Thisisthefirs nameloc in the example above (a.). It containsa
HyQ query to open the MIL-D-87269 document instance whose location is encoded in an entity declaration "house”.
That entity isaccessed through the next nameloc whose ID is"i24761144". This nameloc contains a name list
<nmlist> which has a "document or subdocument™ attribute whose value, "house" isthe actual name of the entity that
locates the "house" document which contains an element whose ID isalso "i24761144".

When the value in the "house" document isreturned, it replacesthe< get> link in the MID asthe content of the< title>
element. At that point, if smply displayed, the link remains soft; however, if the valueisactually copied into the

location of the < get>, thelink becomes"hard". That is, the content of the< title> element isno longer alink; it istext
(#PCDATA) displayed asthetitle.

Thetechnique of using queriesisreferred to as "late binding". 1t enables an author to postpone the actual insertion of
content into an IETM until some event in the project schedul e indicates that the content isready. By using a script and
query mechanismsto evaluate conditions of other documents, dynamic linking and late binding concepts can be used in
powerful and flexible ways.

While thislocation ladder is complex at first glance, it illustrates these concepts:
* All external locations are identified by entity declarations

* Thename space of each SGML document instance is encapsulated in scope. Therefore, havinga< nameloc> in
oneinstance with an 1D will not conflict with an e ement in another instance with the same value for its1D.

* Location ladders and indirect linking enable powerful reuse of links.

A benefit of using theindirect location element typesisthat once the location of an object is encoded with aHyTime
location address, other el ements can use the same location element to locate the same data from anywherein aMID
document instance. A non-redundant location scheme reduces the maintenance of a MID and enablesthe reuse of
linking information.

C.3.2 Using Non-M1L-D-87269 or MIL-M-87268 Specificationsfor M1D Designs

The MID DTD enables MIDsto be defined and delivered for sources of data other than the MI1L-D-87269 class of
document type definitions and non-SGML data types. Because the source document types are decoupled from the MID
components that provide the description of the Presentation System, and these can be decoupled from the custom
libraries (e.g., HyQ functions or other access methods) that access the source document, it is possible with careful
design to provide highly reusable components.

The MID presentation components apply to source documents that use a traditional paper-based approach. If the
source document typeis changed (e.g., World Wide Web Hypertext Markup Language (HTML), the Computer
Graphics Metafile (CGM), semi-conductor manufacturing embedded training), only the SGML elements containing the
information directly related to the document type is modified, e.g., the queries. If adifferent database type (e.g.,
relational) isrequired, notation locations or external processes, (e.q., SQL), for queriesin the new database type are
used.

C-8

	Cover
	Table of Contents
	1.0 How to use this guide
	2.0 References & Other info
	2.1 References
	2.2 Other Sources

	3.0 MID Definition
	4.0 Why you need MID
	4.1 Behavior of apps
	4.2 MID approach

	5.0 General Theory Descr.
	5.1 Containers
	5.2 Transitions & Links
	5.3 Controls
	5.4 Data Types
	5.5 Semantic Grouping
	5.6 Conditionals
	5.7 Scripting
	5.8 External Processes
	5.9 HyTime Location
	5.10 HyTime & SGML Mgmt.

	6.0 DTD with annotations
	7.0 Index of Elements
	8.0 Summary of Changes
	App. A MID DTD
	App. B Relationship Example
	App. C MID Background

